-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpublications.html
215 lines (176 loc) · 14.7 KB
/
publications.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
<!doctype html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Bootstrap CSS -->
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" crossorigin="anonymous">
<link href="skins/style.css?ver=1" rel="stylesheet" />
<link rel="icon" href="https://avatars1.githubusercontent.com/u/11938153?v=3&s=200">
<title>Publications</title>
</head>
<body>
<!-- Navbar Start -->
<nav class="navbar navbar-expand-md navbar-light bg-light fixed-top" style="background-color: #F2F3F4">
<a class="navbar-brand" href="./index.html"><img class="krssg_logo" src="https://avatars1.githubusercontent.com/u/11938153?v=3&s=200 "></a>
<span class="navbar-text font-weight-bold text-justify" id="logo_text">KRSSG</span>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNav">
<ul class="navbar-nav ml-auto">
<li class="nav-item">
<a class="nav-link font-weight-bold" href="./index.html">Home </a>
</li>
<li class="nav-item">
<a class="nav-link font-weight-bold" href="./project.html">Project </a>
</li>
<li class="nav-item active">
<a class="nav-link font-weight-bold active" href="#">Publications <span class="sr-only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link font-weight-bold" href="http://event.krssg.in/index.php" target="__blank">Code-O-Soccer</a>
</li>
<li class="nav-item">
<a class="nav-link font-weight-bold" href="./team.html">Team</a>
</li>
<!-- <li class="nav-item">
<a class="nav-link font-weight-bold" href="#">Alumni</a>
</li> -->
</ul>
</div>
</nav>
<div class="row mt-5"></div>
<div class="row mt-5"></div>
<!-- Navbar End -->
<!-- Paper listing start -->
<div class="container text-justify">
<div class="row mx-auto mt-3">
<a href="https://arxiv.org/pdf/2006.04194.pdf" target="__blank" class="paper_heading font-weight-bold">Robotic Motion Planning using Learned Critical Sources and Local Sampling</a>
<p>
<span class="font-weight-bold">Authors:</span>
<span class="font-italic font-weight-light">Rajat Kumar Jenamani, Rahul Kumar, Parth Mall, Kushal Kedia</span>
<br>
<span class="font-weight-bold">Abstract:</span>
Sampling based methods are widely used for robotic motion planning. Traditionally, these samples are drawn from probabilistic ( or deterministic ) distributions to cover the state space uniformly. Despite being probabilistically complete, they fail to find a feasible path in a reasonable amount of time in constrained environments where it is essential to go through narrow passages (bottleneck regions). Current state of the art techniques train a learning model (learner) to predict samples selectively on these bottleneck regions. However, these algorithms depend completely on samples generated by this learner to navigate through the bottleneck regions. As the complexity of the planning problem increases, the amount of data and time required to make this learner robust to fine variations in the structure of the workspace becomes computationally intractable. In this work, we present (1) an efficient and robust method to use a learner to locate the bottleneck regions and (2) two algorithms that use local sampling methods to leverage the location of these bottleneck regions for efficient motion planning while maintaining probabilistic completeness.
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto mt-3">
<a href="https://www.researchgate.net/publication/334170697_Deep_Learning_rooted_Potential_piloted_RRT_for_expeditious_Path_Planning" target="__blank" class="paper_heading font-weight-bold">Deep Learning rooted Potential piloted RRT* for expeditious Path Planning</a>
<p>
<span class="font-weight-bold">Authors:</span>
<span class="font-italic font-weight-light">Snehal Reddy Koukuntla, Manjunath Bhat, Shamin Aggarwal, Rajat Kumar Jenamani, Jayanta Mukhopadhyay</span>
<br>
<span class="font-weight-bold">Abstract:</span>
Randomised sampling-based algorithms such as RRT and RRT* have widespread use in path planning, but they tend to take a considerable amount of time and space to converge towards the destination. RRT* with artificial potential field (RRT*-APF) is a novel solution to pilot the RRT* sampling towards the destination and away from the obstacles, thus leading to faster convergence. But the ideal potential function varies from one configuration space to another and different sections within a single configuration space as well. Finding the potential function for each section for every configuration space is a grueling task. In this paper, we divide the 2 dimensional configuration space into multiple regions and propose a deep learning based approach in the form of a custom feedforward neural network to tune the sensitive parameters , upon which the potential function depends. These parameters act as a heuristic and pilots the tree towards the destination, which has a substantial effect on both the rate of convergence and path length. Our algorithm, DL-P-RRT* has shown the ability to learn and emulate the shortest path and converges much faster than the current random sampling algorithms as well as deterministic path planning algorithms. So, this algorithm can be used effectively in environments where the path planner is called multiple times, which is typical to events such as Robo-Soccer.
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto mt-3">
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-04239-4_19" target="__blank" class="paper_heading font-weight-bold">Potential and Sampling Based RRT Star for Real-Time Dynamic Motion Planning Accounting for Momentum in Cost Function</a>
<p>
<span class="font-weight-bold">Authors:</span>
<span class="font-italic font-weight-light">Saurabh Agarwal, Ashish Kumar Gaurav, Mehul Kumar Nirala, Sayan Sinha</span>
<br>
<span class="font-weight-bold">Abstract:</span>
Path planning is an extremely important step in every robotics related activity today. In this paper, we present an approach to a real-time path planner which makes use of concepts from the random sampling of the Rapidly-exploring random tree and potential fields. It revises the cost function to incorporate the dynamics of the obstacles in the environment. Not only the path generated is significantly different but also it is much more optimal and rigid to breakdowns and features faster replanning. This variant of the Real-Time RRT* incorporates artificial potential field with a revised cost function.
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto">
<a href="https://arxiv.org/abs/1611.01851" target="__blank" class="paper_heading font-weight-bold">Bayesian Optimisation with Prior Reuse for Motion Planning in Robot Soccer</a>
<p>
<span class="font-weight-bold">Authors:</span>
<span class="font-italic font-weight-light">Abhinav Agarwalla, Arnav Kumar Jain, KV Manohar, Arpit Saxena, Jayanta Mukhopadhyay</span>
<br>
<span class="font-weight-bold">Abstract:</span>
We integrate learning and motion planning for soccer playing differential drive robots using Bayesian optimisation. Trajectories generated using end-slope cubic Bezier splines are first optimised globally through Bayesian optimisation for a set of candidate points with obstacles. The optimised trajectories along with robot and obstacle positions and velocities are stored in a database. The closest planning situation is identified from the database using k-Nearest Neighbour approach. It is further optimised online through reuse of prior information from previously optimised trajectory. Our approach reduces computation time of trajectory optimisation considerably. Velocity profiling generates velocities consistent with robot kinodynamoic constraints, and avoids collision and slipping. Extensive testing is done on developed simulator, as well as on physical differential drive robots. Our method shows marked improvements in mitigating tracking error, and reducing traversal and computational time over competing techniques under the constraints of performing tasks in real time.</p>
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto">
<a href="./publications/KgpKubs_TDP_2018.pdf" target="__blank" class="paper_heading font-weight-bold">KgpKubs Team Description Paper, Robocup SSL 2018</a>
<p><span class="font-weight-bold">Abstract:</span> This paper describes the mechanical, electronic and software designs developed by Kharagpur RoboSoccer Students’ Group (KRSSG) team to compete in RoboCup 2018. All designs are in agreement with the rules and regulations of Small Size League 2018. Software Architecture implemented over Robot Operating System(ROS), trajectory planning and velocity profiling, dribbler/kicker design and embedded circuits over the last year have been listed.</p>
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto">
<a href="https://archive.robocup.info/Soccer/Simulation/3D/TDPs/RoboCup/2018/KgpKubs_SS3D_RC2018_TDP.pdf" target="__blank" class="paper_heading font-weight-bold">KgpKubs Team Description Paper, Robocup 3D Simulation League 2018</a>
<p><span class="font-weight-bold">Abstract:</span> This paper reports the recent developments by the Kgpkubs team. It describes the work on passing, formation strategies, heuristic role assignment and other tactics used to improve the game play.</p>
</div>
<hr class="teal accent-3 mb-0 mt-0 d-inline-block mx-auto " style="width: 100%;">
<div class="row mx-auto">
<a href="./publications/KgpKubs_TDP_2017.pdf" target="__blank" class="paper_heading font-weight-bold">KgpKubs Team Description Paper, Robocup SSL 2017</a>
<p><span class="font-weight-bold">Abstract:</span> This paper describes the mechanical, electronic and software designs developed by Kharagpur RoboSoccer Students’ Group (KRSSG) team to compete in RoboCup 2017. All designs are in agreement with the rules and regulations of Small Size League 2017. Software Architecture implemented over Robot Operating System(ROS), trajectory planning and velocity profiling, dribbler/kicker design and embedded circuits over the last year have been listed.</p>
</div>
</div>
<!-- Paper listing end -->
<!-- Footer Start-->
<footer class="page-footer font-small blue-grey lighten-5 design_footer" >
<div class="container text-center text-md-left mt-5">
<div class="row mt-3 dark-grey-text">
<!-- Empty Row to create space -->
</div>
<div class="row mt-3 dark-grey-text">
<div class="col-md-3 mb-4 mx-auto">
<h6 class="text-uppercase font-weight-bold">About Us</h6>
<hr class="teal accent-3 mb-4 mt-0 d-inline-block mx-auto change_strike_colour" style="width: 60px;">
<p class="text-justify">It is a research group comprising of a bunch of ardent robotics technocrats from the Indian Instiute of Technology, Kharagpur working together to build autonomous soccer-playing robots.</p>
</div>
<div class="col-md-3 mx-auto mb-4 ">
<h6 class="text-uppercase font-weight-bold">Quick Link</h6>
<hr class="teal accent-3 mb-4 mt-0 d-inline-block mx-auto change_strike_colour" style="width: 60px;">
<p>
<i class="fa fa-circle white-text mr-2"></i>
<a class="dark-grey-text quick_links" href="http://www.iitkgp.ac.in/" target="_blank">IIT Kharagpur</a>
</p>
<p>
<i class="fa fa-circle white-text mr-1"></i>
<a class="dark-grey-text quick_links" href="http://robocup.org/" target="_blank">Robocup Federation</a>
</p>
<p>
<i class="fa fa-circle white-text mr-2"></i>
<a class="dark-grey-text quick_links" href="https://www.robocup.org/leagues/7">Small Size League</a>
</p>
<p>
<i class="fa fa-circle white-text mr-2"></i>
<a class="dark-grey-text quick_links" href="https://www.robocuphumanoid.org/">Humanoid</a>
</p>
</div>
<div class="col-md-2 mb-4 mx-auto">
<h6 class="text-uppercase font-weight-bold">Follow Us</h6>
<hr class="teal accent-3 mb-4 mt-0 d-inline-block mx-auto change_strike_colour" style="width: 60px;">
<p>
<i class="fa fa-facebook white-text mr-3"></i>
<a class="dark-grey-text quick_links" href="https://www.facebook.com/krssg/">Facebook</a>
</p>
<p>
<i class="fa fa-youtube white-text mr-3"></i>
<a class="dark-grey-text quick_links" href="https://www.youtube.com/user/KRSSGIITKGP">Youtube</a>
</p>
<p>
<i class="fa fa-github white-text mr-3"></i>
<a class="dark-grey-text quick_links" href="https://github.com/KRSSG">Github</a>
</p>
</div>
<div class="col-md-3 mx-auto mb-4">
<h6 class="text-uppercase font-weight-bold">Contact</h6>
<hr class="teal accent-3 mb-4 mt-0 d-inline-block mx-auto change_strike_colour" style="width: 60px;">
<p class="text-justify">
<i class="fa fa-home mr-3"></i>KRSSG lab, Room No: 101, Technology Students Gymkhana, IIT Kharagpur, Kharagpur - 721302, West Bengal, India.</p>
<p>
<i class="fa fa-envelope mr-3"></i> krssg.contact@gmail.com</p>
<p>
<i class="fa fa-phone mr-3"></i>Mayank: +91 9800688333<br>
Sudarshan: +91 9051869264
Ankush: +91 9932204266</p>
</div>
</div>
</div>
</footer>
<!-- Footer End-->
<!-- Optional JavaScript -->
<!-- jQuery first, then Popper.js, then Bootstrap JS -->
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" integrity="sha384-ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" crossorigin="anonymous"></script>
<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" integrity="sha384-ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" crossorigin="anonymous"></script>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet" />
</body>
</html>