-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathAgent.lua
612 lines (531 loc) · 21.3 KB
/
Agent.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
local _ = require 'moses'
local class = require 'classic'
local optim = require 'optim'
local gnuplot = require 'gnuplot'
local Model = require 'Model'
local Experience = require 'Experience'
local CircularQueue = require 'structures/CircularQueue'
local Singleton = require 'structures/Singleton'
local AbstractAgent = require 'async/AbstractAgent'
require 'classic.torch' -- Enables serialisation
require 'modules/rmspropm' -- Add RMSProp with momentum
-- Detect QT for image display
local qt = pcall(require, 'qt')
local Agent = classic.class('Agent', AbstractAgent)
-- Creates a DQN agent
function Agent:_init(opt)
-- Experiment ID
self._id = opt._id
self.experiments = opt.experiments
-- Actions
self.m = opt.actionSpec[3][2] - opt.actionSpec[3][1] + 1 -- Number of discrete actions
self.actionOffset = 1 - opt.actionSpec[3][1] -- Calculate offset if first action is not indexed as 1
-- Initialise model helper
self.model = Model(opt)
-- Create policy and target networks
self.policyNet = self.model:create()
self.targetNet = self.policyNet:clone() -- Create deep copy for target network
self.targetNet:evaluate() -- Target network always in evaluation mode
self.tau = opt.tau
self.doubleQ = opt.doubleQ
-- Network parameters θ and gradients dθ
self.theta, self.dTheta = self.policyNet:getParameters()
-- Boostrapping
self.bootstraps = opt.bootstraps
self.head = 1 -- Identity of current episode bootstrap head
self.heads = math.max(opt.bootstraps, 1) -- Number of heads
-- Recurrency
self.recurrent = opt.recurrent
self.histLen = opt.histLen
-- Reinforcement learning parameters
self.gamma = opt.gamma
self.rewardClip = opt.rewardClip
self.tdClip = opt.tdClip
self.epsilonStart = opt.epsilonStart
self.epsilonEnd = opt.epsilonEnd
self.epsilonGrad = (opt.epsilonEnd - opt.epsilonStart)/opt.epsilonSteps -- Greediness ε decay factor
self.PALpha = opt.PALpha
-- State buffer
self.stateBuffer = CircularQueue(opt.recurrent and 1 or opt.histLen, opt.Tensor, opt.stateSpec[2])
-- Experience replay memory
self.memory = Experience(opt.memSize, opt)
self.memSampleFreq = opt.memSampleFreq
self.memNSamples = opt.memNSamples
self.memSize = opt.memSize
self.memPriority = opt.memPriority
-- Training mode
self.isTraining = false
self.batchSize = opt.batchSize
self.learnStart = opt.learnStart
self.progFreq = opt.progFreq
self.gradClip = opt.gradClip
-- Optimiser parameters
self.optimiser = opt.optimiser
self.optimParams = {
learningRate = opt.eta,
momentum = opt.momentum
}
-- Q-learning variables (per head)
self.QPrimes = opt.Tensor(opt.batchSize, self.heads, self.m)
self.tdErr = opt.Tensor(opt.batchSize, self.heads)
self.VPrime = opt.Tensor(opt.batchSize, self.heads, 1)
-- Validation variables
self.valSize = opt.valSize
self.valMemory = Experience(opt.valSize + 3, opt, true) -- Validation experience replay memory (with empty starting state...states...final transition...blank state)
self.losses = {}
self.avgV = {} -- Running average of V(s')
self.avgTdErr = {} -- Running average of TD-error δ
self.valScores = {} -- Validation scores (passed from main script)
self.normScores = {} -- Normalised validation scores (passed from main script)
-- Tensor creation
self.Tensor = opt.Tensor
-- Saliency display
self:setSaliency(opt.saliency) -- Set saliency option on agent and model
if #opt.stateSpec[2] == 3 then -- Make saliency map only for visual states
self.saliencyMap = opt.Tensor(1, opt.stateSpec[2][2], opt.stateSpec[2][3]):zero()
self.inputGrads = opt.Tensor(opt.histLen*opt.stateSpec[2][1], opt.stateSpec[2][2], opt.stateSpec[2][3]):zero() -- Gradients with respect to the input (for saliency maps)
end
-- Get singleton instance for step
self.globals = Singleton.getInstance()
end
-- Sets training mode
function Agent:training()
self.isTraining = true
self.policyNet:training()
-- Clear state buffer
self.stateBuffer:clear()
-- Reset bootstrap head
if self.bootstraps > 0 then
self.head = torch.random(self.bootstraps)
end
-- Forget last sequence
if self.recurrent then
self.policyNet:forget()
self.targetNet:forget()
end
end
-- Sets evaluation mode
function Agent:evaluate()
self.isTraining = false
self.policyNet:evaluate()
-- Clear state buffer
self.stateBuffer:clear()
-- Set previously stored state as invalid (as no transition stored)
self.memory:setInvalid()
-- Reset bootstrap head
if self.bootstraps > 0 then
self.head = torch.random(self.bootstraps)
end
-- Forget last sequence
if self.recurrent then
self.policyNet:forget()
end
end
-- Observes the results of the previous transition and chooses the next action to perform
function Agent:observe(reward, rawObservation, terminal)
-- Clip reward for stability
if self.rewardClip > 0 then
reward = math.max(reward, -self.rewardClip)
reward = math.min(reward, self.rewardClip)
end
-- Process observation of current state
local observation = self.model:preprocess(rawObservation) -- Must avoid side-effects on observation from env
-- Store in buffer depending on terminal status
if terminal then
self.stateBuffer:pushReset(observation) -- Will clear buffer on next push
else
self.stateBuffer:push(observation)
end
-- Retrieve current and historical states from state buffer
local state = self.stateBuffer:readAll()
-- Set ε based on training vs. evaluation mode
local epsilon = 0.001 -- Taken from tuned DDQN evaluation
if self.isTraining then
if self.globals.step < self.learnStart then
-- Keep ε constant before learning starts
epsilon = self.epsilonStart
else
-- Use annealing ε
epsilon = math.max(self.epsilonStart + (self.globals.step - self.learnStart - 1)*self.epsilonGrad, self.epsilonEnd)
end
end
local aIndex = 1 -- In a terminal state, choose no-op/first action by default
if not terminal then
if not self.isTraining and self.bootstraps > 0 then
-- Retrieve estimates from all heads
local QHeads = self.policyNet:forward(state)
-- Use ensemble policy with bootstrap heads (in evaluation mode)
local QHeadsMax, QHeadsMaxInds = QHeads:max(2) -- Find max action per head
aIndex = torch.mode(QHeadsMaxInds:float(), 1)[1][1] -- TODO: Torch.CudaTensor:mode is missing
-- Plot uncertainty in ensemble policy
if qt then
gnuplot.hist(QHeadsMaxInds, self.m, 0.5, self.m + 0.5)
end
-- Compute saliency map
if self.saliency then
self:computeSaliency(state, aIndex, true)
end
elseif torch.uniform() < epsilon then
-- Choose action by ε-greedy exploration (even with bootstraps)
aIndex = torch.random(1, self.m)
-- Forward state anyway if recurrent
if self.recurrent then
self.policyNet:forward(state)
end
-- Reset saliency if action not chosen by network
if self.saliency then
self.saliencyMap:zero()
end
else
-- Retrieve estimates from all heads
local QHeads = self.policyNet:forward(state)
-- Sample from current episode head (indexes on first dimension with no batch)
local Qs = QHeads:select(1, self.head)
local maxQ = Qs[1]
local bestAs = {1}
-- Find best actions
for a = 2, self.m do
if Qs[a] > maxQ then
maxQ = Qs[a]
bestAs = {a}
elseif Qs[a] == maxQ then -- Ties can occur even with floats
bestAs[#bestAs + 1] = a
end
end
-- Perform random tie-breaking (if more than one argmax action)
aIndex = bestAs[torch.random(1, #bestAs)]
-- Compute saliency
if self.saliency then
self:computeSaliency(state, aIndex, false)
end
end
end
-- If training
if self.isTraining then
-- Store experience tuple parts (including pre-emptive action)
local defaultMask = torch.ByteTensor(self.heads):fill(1) -- By default, the no head is masked
local mask = defaultMask:clone()
if self.bootstraps > 0 then
mask = mask:bernoulli(0.5) -- Sample a mask for bootstrap using p = 0.5; Given in https://arxiv.org/pdf/1602.04621.pdf
end
self.memory:store(reward, observation, terminal, aIndex, mask) -- TODO: Sample independent Bernoulli(p) bootstrap masks for all heads; p = 1 means no masks needed
-- Collect validation transitions at the start
if self.globals.step <= self.valSize + 1 then
self.valMemory:store(reward, observation, terminal, aIndex, defaultMask)
end
-- Sample uniformly or with prioritised sampling
if self.globals.step % self.memSampleFreq == 0 and self.globals.step >= self.learnStart then
for n = 1, self.memNSamples do
-- Optimise (learn) from experience tuples
self:optimise(self.memory:sample(self.head))
end
end
-- Update target network every τ steps
if self.globals.step % self.tau == 0 and self.globals.step >= self.learnStart then
self.targetNet = self.policyNet:clone()
self.targetNet:evaluate()
end
-- Rebalance priority queue for prioritised experience replay
if self.globals.step % self.memSize == 0 and self.memPriority then
self.memory:rebalance()
end
end
if terminal then
if self.bootstraps > 0 then
-- Change bootstrap head for next episode
self.head = torch.random(self.bootstraps)
elseif self.recurrent then
-- Forget last sequence
self.policyNet:forget()
end
end
-- Return action index with offset applied
return aIndex - self.actionOffset
end
-- Learns from experience
function Agent:learn(x, indices, ISWeights, isValidation)
-- Copy x to parameters θ if necessary
if x ~= self.theta then
self.theta:copy(x)
end
-- Reset gradients dθ
self.dTheta:zero()
-- Retrieve experience tuples
local memory = isValidation and self.valMemory or self.memory
local states, actions, rewards, transitions, terminals = memory:retrieve(indices) -- Terminal status is for transition (can't act in terminal state)
local N = actions:size(1)
if self.recurrent then
-- Forget last sequence
self.policyNet:forget()
self.targetNet:forget()
end
-- Perform argmax action selection
local APrimeMax, APrimeMaxInds
if self.doubleQ then
-- Calculate Q-values from transition using policy network
self.QPrimes = self.policyNet:forward(transitions) -- Find argmax actions using policy network
-- Perform argmax action selection on transition using policy network: argmax_a[Q(s', a; θpolicy)]
APrimeMax, APrimeMaxInds = torch.max(self.QPrimes, 3)
-- Calculate Q-values from transition using target network
self.QPrimes = self.targetNet:forward(transitions) -- Evaluate Q-values of argmax actions using target network
else
-- Calculate Q-values from transition using target network
self.QPrimes = self.targetNet:forward(transitions) -- Find and evaluate Q-values of argmax actions using target network
-- Perform argmax action selection on transition using target network: argmax_a[Q(s', a; θtarget)]
APrimeMax, APrimeMaxInds = torch.max(self.QPrimes, 3)
end
-- Initially set target Y = Q(s', argmax_a[Q(s', a; θ)]; θtarget), where initial θ is either θtarget (DQN) or θpolicy (DDQN)
local Y = self.Tensor(N, self.heads)
for n = 1, N do
self.QPrimes[n]:mul(1 - terminals[n]) -- Zero Q(s' a) when s' is terminal
Y[n] = self.QPrimes[n]:gather(2, APrimeMaxInds[n])
end
-- Calculate target Y := r + γ.Q(s', argmax_a[Q(s', a; θ)]; θtarget)
Y:mul(self.gamma):add(rewards:repeatTensor(1, self.heads))
-- Get all predicted Q-values from the current state
if self.recurrent and self.doubleQ then
self.policyNet:forget()
end
local QCurr = self.policyNet:forward(states) -- Correct internal state of policy network before backprop
local QTaken = self.Tensor(N, self.heads)
-- Get prediction of current Q-values with given actions
for n = 1, N do
QTaken[n] = QCurr[n][{{}, {actions[n]}}]
end
-- Calculate TD-errors δ := ∆Q(s, a) = Y − Q(s, a)
self.tdErr = Y - QTaken
-- Calculate Advantage Learning update(s)
if self.PALpha > 0 then
-- Calculate Q(s, a) and V(s) using target network
if self.recurrent then
self.targetNet:forget()
end
local Qs = self.targetNet:forward(states)
local Q = self.Tensor(N, self.heads)
for n = 1, N do
Q[n] = Qs[n][{{}, {actions[n]}}]
end
local V = torch.max(Qs, 3) -- Current states cannot be terminal
-- Calculate Advantage Learning update ∆ALQ(s, a) := δ − αPAL(V(s) − Q(s, a))
local tdErrAL = self.tdErr - V:csub(Q):mul(self.PALpha)
-- Calculate Q(s', a) and V(s') using target network
local QPrime = self.Tensor(N, self.heads)
for n = 1, N do
QPrime[n] = self.QPrimes[n][{{}, {actions[n]}}]
end
self.VPrime = torch.max(self.QPrimes, 3)
-- Calculate Persistent Advantage Learning update ∆PALQ(s, a) := max[∆ALQ(s, a), δ − αPAL(V(s') − Q(s', a))]
self.tdErr = torch.max(torch.cat(tdErrAL, self.tdErr:csub((self.VPrime:csub(QPrime):mul(self.PALpha))), 3), 3):view(N, self.heads, 1)
end
-- Calculate loss
local loss
if self.tdClip > 0 then
-- Squared loss is used within clipping range, absolute loss is used outside (approximates Huber loss)
local sqLoss = torch.cmin(torch.abs(self.tdErr), self.tdClip)
local absLoss = torch.abs(self.tdErr) - sqLoss
loss = torch.mean(sqLoss:pow(2):mul(0.5):add(absLoss:mul(self.tdClip))) -- Average over heads
-- Clip TD-errors δ
self.tdErr:clamp(-self.tdClip, self.tdClip)
else
-- Squared loss
loss = torch.mean(self.tdErr:clone():pow(2):mul(0.5)) -- Average over heads
end
-- Exit if being used for validation metrics
if isValidation then
return
end
-- Send TD-errors δ to be used as priorities
self.memory:updatePriorities(indices, torch.mean(self.tdErr, 2)) -- Use average error over heads
-- Zero QCurr outputs (no error)
QCurr:zero()
-- Set TD-errors δ with given actions
for n = 1, N do
-- Correct prioritisation bias with importance-sampling weights
QCurr[n][{{}, {actions[n]}}] = torch.mul(-self.tdErr[n], ISWeights[n]) -- Negate target to use gradient descent (not ascent) optimisers
end
-- Backpropagate (network accumulates gradients internally)
self.policyNet:backward(states, QCurr) -- TODO: Work out why DRQN crashes on different batch sizes
-- Clip the L2 norm of the gradients
if self.gradClip > 0 then
self.policyNet:gradParamClip(self.gradClip)
end
if self.recurrent then
-- Forget last sequence
self.policyNet:forget()
self.targetNet:forget()
-- Previous hidden state of policy net not restored as model parameters changed
end
return loss, self.dTheta
end
-- Optimises the network parameters θ
function Agent:optimise(indices, ISWeights)
-- Create function to evaluate given parameters x
local feval = function(x)
return self:learn(x, indices, ISWeights)
end
-- Optimise
local __, loss = optim[self.optimiser](feval, self.theta, self.optimParams)
-- Store loss
if self.globals.step % self.progFreq == 0 then
self.losses[#self.losses + 1] = loss[1]
end
return loss[1]
end
-- Pretty prints array
local pprintArr = function(memo, v)
return memo .. ', ' .. v
end
-- Reports absolute network weights and gradients
function Agent:report()
-- Collect layer with weights
local weightLayers = self.policyNet:findModules('nn.SpatialConvolution')
if #weightLayers == 0 then
-- Assume cuDNN convolutions
weightLayers = self.policyNet:findModules('cudnn.SpatialConvolution')
end
local fcLayers = self.policyNet:findModules('nn.Linear')
weightLayers = _.append(weightLayers, fcLayers)
-- Array of norms and maxima
local wNorms = {}
local wMaxima = {}
local wGradNorms = {}
local wGradMaxima = {}
-- Collect statistics
for l = 1, #weightLayers do
local w = weightLayers[l].weight:clone():abs() -- Weights (absolute)
wNorms[#wNorms + 1] = torch.mean(w) -- Weight norms:
wMaxima[#wMaxima + 1] = torch.max(w) -- Weight max
w = weightLayers[l].gradWeight:clone():abs() -- Weight gradients (absolute)
wGradNorms[#wGradNorms + 1] = torch.mean(w) -- Weight grad norms:
wGradMaxima[#wGradMaxima + 1] = torch.max(w) -- Weight grad max
end
-- Create report string table
local reports = {
'Weight norms: ' .. _.reduce(wNorms, pprintArr),
'Weight max: ' .. _.reduce(wMaxima, pprintArr),
'Weight gradient norms: ' .. _.reduce(wGradNorms, pprintArr),
'Weight gradient max: ' .. _.reduce(wGradMaxima, pprintArr)
}
return reports
end
-- Reports stats for validation
function Agent:validate()
-- Validation variables
local totalV, totalTdErr = 0, 0
-- Loop over validation transitions
local nBatches = math.ceil(self.valSize / self.batchSize)
local ISWeights = self.Tensor(self.batchSize):fill(1)
local startIndex, endIndex, batchSize, indices
for n = 1, nBatches do
startIndex = (n - 1)*self.batchSize + 2
endIndex = math.min(n*self.batchSize + 1, self.valSize + 1)
batchSize = endIndex - startIndex + 1
indices = torch.linspace(startIndex, endIndex, batchSize):long()
-- Perform "learning" (without optimisation)
self:learn(self.theta, indices, ISWeights:narrow(1, 1, batchSize), true)
-- Calculate V(s') and TD-error δ
if self.PALpha == 0 then
self.VPrime = torch.max(self.QPrimes, 3)
end
-- Average over heads
totalV = totalV + torch.mean(self.VPrime, 2):sum()
totalTdErr = totalTdErr + torch.mean(self.tdErr, 2):abs():sum()
end
-- Average and insert values
self.avgV[#self.avgV + 1] = totalV / self.valSize
self.avgTdErr[#self.avgTdErr + 1] = totalTdErr / self.valSize
-- Plot and save losses
if #self.losses > 0 then
local losses = torch.Tensor(self.losses)
gnuplot.pngfigure(paths.concat(self.experiments, self._id, 'losses.png'))
gnuplot.plot('Loss', torch.linspace(math.floor(self.learnStart/self.progFreq), math.floor(self.globals.step/self.progFreq), #self.losses), losses, '-')
gnuplot.xlabel('Step (x' .. self.progFreq .. ')')
gnuplot.ylabel('Loss')
gnuplot.plotflush()
torch.save(paths.concat(self.experiments, self._id, 'losses.t7'), losses)
end
-- Plot and save V
local epochIndices = torch.linspace(1, #self.avgV, #self.avgV)
local Vs = torch.Tensor(self.avgV)
gnuplot.pngfigure(paths.concat(self.experiments, self._id, 'Vs.png'))
gnuplot.plot('V', epochIndices, Vs, '-')
gnuplot.xlabel('Epoch')
gnuplot.ylabel('V')
gnuplot.movelegend('left', 'top')
gnuplot.plotflush()
torch.save(paths.concat(self.experiments, self._id, 'V.t7'), Vs)
-- Plot and save TD-error δ
local TDErrors = torch.Tensor(self.avgTdErr)
gnuplot.pngfigure(paths.concat(self.experiments, self._id, 'TDErrors.png'))
gnuplot.plot('TD-Error', epochIndices, TDErrors, '-')
gnuplot.xlabel('Epoch')
gnuplot.ylabel('TD-Error')
gnuplot.plotflush()
torch.save(paths.concat(self.experiments, self._id, 'TDErrors.t7'), TDErrors)
-- Plot and save average score
local scores = torch.Tensor(self.valScores)
gnuplot.pngfigure(paths.concat(self.experiments, self._id, 'scores.png'))
gnuplot.plot('Score', epochIndices, scores, '-')
gnuplot.xlabel('Epoch')
gnuplot.ylabel('Average Score')
gnuplot.movelegend('left', 'top')
gnuplot.plotflush()
torch.save(paths.concat(self.experiments, self._id, 'scores.t7'), scores)
-- Plot and save normalised score
if #self.normScores > 0 then
local normScores = torch.Tensor(self.normScores)
gnuplot.pngfigure(paths.concat(self.experiments, self._id, 'normScores.png'))
gnuplot.plot('Score', epochIndices, normScores, '-')
gnuplot.xlabel('Epoch')
gnuplot.ylabel('Normalised Score')
gnuplot.movelegend('left', 'top')
gnuplot.plotflush()
torch.save(paths.concat(self.experiments, self._id, 'normScores.t7'), normScores)
end
gnuplot.close()
return self.avgV[#self.avgV], self.avgTdErr[#self.avgTdErr]
end
-- Saves network convolutional filters as images
function Agent:visualiseFilters()
local filters = self.model:getFilters()
for i, v in ipairs(filters) do
image.save(paths.concat(self.experiments, self._id, 'conv_layer_' .. i .. '.png'), v)
end
end
-- Sets saliency style
function Agent:setSaliency(saliency)
self.saliency = saliency
self.model:setSaliency(saliency)
end
-- Computes a saliency map (assuming a forward pass of a single state)
function Agent:computeSaliency(state, index, ensemble)
-- Switch to possibly special backpropagation
self.model:salientBackprop()
-- Create artificial high target
local maxTarget = self.Tensor(self.heads, self.m):zero()
if ensemble then
-- Set target on all heads (when using ensemble policy)
maxTarget[{{}, {index}}] = 1
else
-- Set target on current head
maxTarget[self.head][index] = 1
end
-- Backpropagate to inputs
self.inputGrads = self.policyNet:backward(state, maxTarget)
-- Saliency map ref used by Display
self.saliencyMap = torch.abs(self.inputGrads:select(1, self.recurrent and 1 or self.histLen):float())
-- Switch back to normal backpropagation
self.model:normalBackprop()
end
-- Saves the network parameters θ
function Agent:saveWeights(path)
torch.save(path, self.theta:float()) -- Do not save as CudaTensor to increase compatibility
end
-- Loads network parameters θ
function Agent:loadWeights(path)
local weights = torch.load(path)
self.theta:copy(weights)
self.targetNet = self.policyNet:clone()
self.targetNet:evaluate()
end
return Agent