-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
84 lines (78 loc) · 2.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import random
import numpy as np
from typing import Iterator, Tuple, Union
from argparse import ArgumentParser
def get_args():
parser = ArgumentParser()
parser.add_argument("--alpha", type=float, default=1e-2)
parser.add_argument("--beta", type=float, default=1e-3)
parser.add_argument("--global_epochs", type=int, default=200)
parser.add_argument("--local_epochs", type=int, default=4)
parser.add_argument(
"--pers_epochs",
type=int,
default=1,
help="Indicate how many data batches would be used for personalization. Negatives means that equal to train phase.",
)
parser.add_argument(
"--hf",
type=int,
default=1,
help="0 for performing Per-FedAvg(FO), others for Per-FedAvg(HF)",
)
parser.add_argument("--batch_size", type=int, default=40)
parser.add_argument(
"--valset_ratio",
type=float,
default=0.1,
help="Proportion of val set in the entire client local dataset",
)
parser.add_argument(
"--dataset", type=str, choices=["mnist", "cifar"], default="mnist"
)
parser.add_argument("--client_num_per_round", type=int, default=10)
parser.add_argument("--seed", type=int, default=17)
parser.add_argument(
"--gpu",
type=int,
default=1,
help="Non-zero value for using gpu, 0 for using cpu",
)
parser.add_argument(
"--eval_while_training",
type=int,
default=1,
help="Non-zero value for performing local evaluation before and after local training",
)
parser.add_argument("--log", type=int, default=0)
return parser.parse_args()
@torch.no_grad()
def eval(
model: torch.nn.Module,
dataloader: torch.utils.data.DataLoader,
criterion: Union[torch.nn.MSELoss, torch.nn.CrossEntropyLoss],
device=torch.device("cpu"),
) -> Tuple[torch.Tensor, torch.Tensor]:
model.eval()
total_loss = 0
num_samples = 0
acc = 0
for x, y in dataloader:
x, y = x.to(device), y.to(device)
logit = model(x)
# total_loss += criterion(logit, y) / y.size(-1)
total_loss += criterion(logit, y)
pred = torch.softmax(logit, -1).argmax(-1)
acc += torch.eq(pred, y).int().sum()
num_samples += y.size(-1)
model.train()
return total_loss, acc / num_samples
def fix_random_seed(seed: int):
torch.cuda.empty_cache()
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True