-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconvert.py
266 lines (208 loc) · 8.82 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import os
import argparse
from models import DiracDeltaNet_wrapper
from models import ShuffleNetv2_wrapper
from torch.autograd import Variable
from extensions.utils import progress_bar
from extensions.model_refinery_wrapper import ModelRefineryWrapper
from extensions.refinery_loss import RefineryLoss
parser = argparse.ArgumentParser(description='PyTorch imagenet Training in quant')
parser.add_argument('--datadir', help='path to dataset')
parser.add_argument('--lr', default=0.5, type=float, help='learning rate')
parser.add_argument('--totalepoch', default=90, type=int, help='how many epoch')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
parser.add_argument('--batch_size', '-b', default=1024, type=int, help='batch size')
parser.add_argument('--weight_decay', '--wd', default=4e-5, type=float, help='weight decay (default: 4e-5)')
parser.add_argument('--crop_scale', default=0.2, type=float, help='random resized crop scale')
parser.add_argument('--expansion', '-e', default=2.0, type=float, help='expansion rate for the middle plate')
parser.add_argument('--base_channel_size', default=116, type=int, help='base channel size of the shuffle block')
args = parser.parse_args()
# Data
print('==> Preparing data..')
# Data loading code
traindir = os.path.join(args.datadir, 'train')
valdir = os.path.join(args.datadir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform_train=transforms.Compose([
transforms.RandomResizedCrop(224,scale=(args.crop_scale,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
#imagenet
trainset = datasets.ImageFolder(traindir, transform_train)
testset = datasets.ImageFolder(valdir, transform_test)
num_classes=1000
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=30)
testloader = torch.utils.data.DataLoader(testset, batch_size=1000, shuffle=False, pin_memory=True, num_workers=30)
print(args.weight_decay)
use_cuda = torch.cuda.is_available()
best_acc = 0.0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
input_path ='./checkpoint/DiracDeltaNet_full.t7'
print('Using input path: %s' % input_path)
output_path ='./checkpoint/DiracDeltaNet_full.t7'
print('Using output path: %s' % output_path)
checkpoint = torch.load(input_path)
init_net = checkpoint['net']
#best_acc = checkpoint['acc']
#start_epoch = checkpoint['epoch']
init_net=init_net.to('cpu')
if not args.resume:
net=DiracDeltaNet_wrapper(expansion=args.expansion, base_channelsize=args.base_channel_size, num_classes=num_classes, weight_bit=32, act_bit=32, first_weight_bit=32, first_act_bit=32, last_weight_bit=32, last_act_bit=32, fc_bit=32, extern_init=True, init_model=init_net)
#net=tianjun_net4(expansion=args.expansion, base_channelsize=args.base_channel_size, num_classes=num_classes, weight_bit=1, act_bit=4, first_weight_bit=1, first_act_bit=4, last_weight_bit=1, last_act_bit=4, fc_bit=8, extern_init=True, init_model=init_net)
#net=ShuffleNetv2_wrapper(expansion=args.expansion, base_channelsize=args.base_channel_size, num_classes=num_classes, weight_bit=32, act_bit=32, extern_init=True, init_model=init_net)
#print(net)
#f=open('imagenet_net.txt','w')
#f.write(str(net))
#f.close()
else:
checkpoint = torch.load(output_path)
net = checkpoint['net']
best_acc = checkpoint['acc_5']
start_epoch = checkpoint['epoch']+1
label_refinery=torch.load('./resnet50.t7')
net = ModelRefineryWrapper(net, label_refinery)
#init_net.cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
net = nn.DataParallel(net)
net=net.to(device)
criterion = RefineryLoss()
model_trainable_parameters = filter(lambda x: x.requires_grad, net.parameters())
optimizer = optim.SGD(model_trainable_parameters, lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
if not args.resume:
iteration=0
else:
iteration=start_epoch*(int(1281167/args.batch_size)+1)
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k)
return res
def adjust_learning_rate(optimizer, iteration, lr):
#linear lr decay
#total_iteration=(int(1281167/args.batch_size)+1)*args.totalepoch
#new_lr=lr-lr*float(iteration)/(float(total_iteration-1.0))
#step lr decay
if epoch<20:
new_lr=lr
elif epoch<30:
new_lr=lr/5.0
elif epoch<40:
new_lr=lr/25.0
else:
new_lr=lr/125.0
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
return new_lr
# Training
def train(epoch):
global iteration
print('\nEpoch: %d' % epoch)
net.train()
criterion.train()
net.to(device)
train_loss = 0
correct_1 = 0 # moniter top 1
correct_5 = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
adjust_learning_rate(optimizer, iteration, args.lr)
#print('new_lr:', new_lr)
if use_cuda:
inputs, targets = inputs.cuda(device,non_blocking=True), targets.cuda(device,non_blocking=True)
optimizer.zero_grad()
#inputs, targets = Variable(inputs), Variable(targets)
outputs = net(inputs)
loss = criterion(outputs, targets)
if isinstance(loss, tuple):
loss_value, outputs = loss
else:
loss_value = loss
loss_value.backward()
optimizer.step()
train_loss += loss_value.item()
#_, predicted = torch.max(outputs.data, 1)
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
total += targets.size(0)
correct_1 += prec1
correct_5 += prec5
iteration=iteration+1
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*float(correct_5)/float(total), correct_5, total))
return 100.*float(correct_1)/float(total),100.*float(correct_5)/float(total),train_loss
def test(epoch):
global best_acc
net.eval()
criterion.eval()
test_loss = 0
correct_1 = 0
correct_5 = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
if use_cuda:
inputs, targets = inputs.cuda(device), targets.cuda(device)
#inputs, targets = Variable(inputs, volatile=True), Variable(targets)
with torch.no_grad():
outputs = net(inputs)
loss = criterion(outputs, targets)
if isinstance(loss, tuple):
loss_value, outputs = loss
else:
loss_value = loss
test_loss += loss_value.item()
#_, predicted = torch.max(outputs.data, 1)
prec1, prec5 = accuracy(outputs, targets, topk=(1, 5))
total += targets.size(0)
correct_1 += prec1
correct_5 += prec5
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*float(correct_1)/float(total), correct_1, total))
# Save checkpoint.
acc_5 = 100.*float(correct_5)/float(total)
if acc_5 > best_acc:
print('Saving..')
state = {
'net': net.module.model if use_cuda and torch.cuda.device_count() > 1 else net.model,
'acc_1': 100.*float(correct_1)/float(total),
'acc_5': 100.*float(correct_5)/float(total),
'lr': args.lr,
'epoch': epoch,
'weight_decay': args.weight_decay,
'batch_size': args.batch_size,
}
torch.save(state, output_path)
print('* Saved checkpoint to %s' % output_path)
best_acc = acc_5
return 100.*float(correct_1)/float(total),100.*float(correct_5)/float(total),test_loss
for epoch in range(start_epoch, int(args.totalepoch)):
#acc1,acc5,loss=train(epoch)
#f.write(str(acc1)+' '+str(acc5)+' '+str(loss)+' ')
acc1,acc5,loss=test(epoch)