-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiAgents.py
619 lines (491 loc) · 28.8 KB
/
multiAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# multiAgents.py
# --------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from util import manhattanDistance
from game import Directions
import random, util
import logging, os, sys
import datetime as dt
from game import Agent
import traceback
import math
currentDt = dt.datetime.now().strftime('%m-%d-%Y-%H%M%S')
logPath = os.path.join(os.getcwd(), 'logs')
if not os.path.exists(logPath):
os.mkdir(logPath)
fileName = os.path.join(logPath, f'assignment2__{currentDt}.log')
logging.basicConfig(filename=fileName,level=logging.DEBUG)
class ReflexAgent(Agent):
"""
A reflex agent chooses an action at each choice point by examining
its alternatives via a state evaluation function.
The code below is provided as a guide. You are welcome to change
it in any way you see fit, so long as you don't touch our method
headers.
"""
def __init__(self):
self.foodStart = 0
self.previousSpace = (0,0)
self.agentLogPrefix = 'REFLEX AGENT:'
def getAction(self, gameState):
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix} NEW ACTION STATE')
logging.info('-'*80)
"""
You do not need to change this method, but you're welcome to.
getAction chooses among the best options according to the evaluation function.
Just like in the previous project, getAction takes a GameState and returns
some Directions.X for some X in the set {NORTH, SOUTH, WEST, EAST, STOP}
"""
# Collect legal moves and successor states
legalMoves = gameState.getLegalActions()
logging.info(f'{self.agentLogPrefix} Legal moves for Pac-man: {legalMoves}')
# Choose one of the best actions
scores = [self.evaluationFunction(gameState, action) for action in legalMoves]
bestScore = max(scores)
bestIndices = [index for index in range(len(scores)) if scores[index] == bestScore]
chosenIndex = random.choice(bestIndices) # Pick randomly among the best
logging.info('-'*80)
chosenPath = str(legalMoves[bestIndices[0]])
logging.info(f'{self.agentLogPrefix} Scores for each move Pac-man can take: {scores}')
logging.info(f'{self.agentLogPrefix} Path chosen: {chosenPath}')
logging.info('-'*80)
self.previousSpace = gameState.getPacmanPosition()
"Add more of your code here if you want to"
return legalMoves[chosenIndex]
def calcGridDistance(self, ax, ay, bx, by):
return abs(ax-bx) + abs(ay-by)
def calcCapsuleCost(self, capsulePositions, pacX, pacY, navSpace, longDist):
capsulesLeft = len(capsulePositions)
if capsulesLeft > 0:
capsuleManQueue = util.PriorityQueue()
sumOfManDist = 0
for capsule in capsulePositions:
capX, capY = capsule
capsuleManDist = self.calcGridDistance(pacX, pacY, capX, capY)
capsuleManQueue.push((capsule, capsuleManDist), capsuleManDist)
sumOfManDist += capsuleManDist
averageCapsuleDist = (sumOfManDist / len(capsulePositions))
logging.info(f'{self.agentLogPrefix} Average distance to a capsule using Manhattan distance: {averageCapsuleDist}')
closestCapsule, distToCapsule = capsuleManQueue.pop()
logging.info(f'{self.agentLogPrefix} Capsule at {closestCapsule} is the closest to Pac-man using Manhattan distance {distToCapsule}')
capsuleCost = (longDist-distToCapsule) * 10
return closestCapsule, distToCapsule, capsuleCost
return (0,0), 0, 0
def calcFoodCost(self, foodLocations, pacX, pacY, longDist):
foodLeft = len(foodLocations)
foodStart = self.foodStart
foodEaten = foodStart - foodLeft
logging.info(f'{self.agentLogPrefix} Food start: {foodStart} | Food eaten: {foodEaten} | Food left: {foodLeft}')
if foodLeft > 0:
foodQueue = util.PriorityQueue()
foodDistList = []
for food in foodLocations:
foodX, foodY = food
foodDist = self.calcGridDistance(pacX, pacY, foodX, foodY)
foodDistList.append(foodDist)
foodQueue.push((food, foodDist), foodDist)
totalDistCost = sum(foodDistList)
averageDist = totalDistCost / foodLeft
logging.info(f'{self.agentLogPrefix} Average distance to a food using Manhattan distance: {averageDist}')
food, foodDist = foodQueue.pop()
logging.info(f'{self.agentLogPrefix} Food at {food} is the closest to Pac-man using Manhattan distance {foodDist}')
foodCost = ((1 / (foodDist)) * 100) + ((foodEaten/foodStart) * 500)
return food, foodDist, foodCost
else:
return (pacX, pacY), 0, 999999
def calcGhostCost(self, ghostPositions, pacX, pacY, longDist):
while len(ghostPositions) > 0:
ghostManQueue = util.PriorityQueue()
sumOfManDist = 0
ghostAlert = False
for ghost in ghostPositions:
ghostX, ghostY = ghost
ghostManDist = self.calcGridDistance(pacX, pacY, ghostX, ghostY)
ghostManQueue.push((ghost, ghostManDist), ghostManDist)
sumOfManDist += ghostManDist
averageGhostDist = (sumOfManDist / len(ghostPositions))
logging.info(f'{self.agentLogPrefix} Average distance to a ghost using Manhattan distance: {averageGhostDist}')
closestGhost, distToGhost = ghostManQueue.pop()
logging.info(f'{self.agentLogPrefix} Ghost at {closestGhost} is the closest to Pac-man using Manhattan distance {distToGhost}')
if distToGhost < 3:
ghostAlert = True
# need to work on ghost cost output, getting really skewed values, like -/+ 600000000
if not ghostAlert:
# as long as a ghost is 3 or more grid distance away, return the average manhattan distance
logging.info(f'{self.agentLogPrefix} Ghost alert silent')
return closestGhost, distToGhost, (1/distToGhost) * 10
else:
# otherwise return the distance to closest ghost
logging.info(f'{self.agentLogPrefix} Ghost alert triggered')
return closestGhost, distToGhost, (10 - distToGhost) * 100
return (pacX, pacY), 0, 0
def detectDeadEnd(self, currentGameState, pacX, pacY):
legalMoves = currentGameState.getLegalActions()
if 'Stop' in legalMoves:
legalMoves.remove('Stop')
logging.info(f'{self.agentLogPrefix} Pac-man has {len(legalMoves)} successor states')
if len(legalMoves) <= 1:
return True
else:
return False
def setInitialFood(self, numFood):
if numFood > self.foodStart:
self.foodStart = numFood
else:
return
def evaluationFunction(self, currentGameState, action):
"""
Design a better evaluation function here.
The evaluation function takes in the current and proposed successor
GameStates (pacman.py) and returns a number, where higher numbers are better.
The code below extracts some useful information from the state, like the
remaining food (newFood) and Pacman position after moving (newPos).
newScaredTimes holds the number of moves that each ghost will remain
scared because of Pacman having eaten a power pellet.
logging.info out these variables to see what you're getting, then combine them
to create a masterful evaluation function.
"""
"*** YOUR CODE HERE ***"
baseScore = currentGameState.getScore()
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix} NEW EVALUATION STATE: {action}')
logging.info(f'{self.agentLogPrefix} CURRENT SCORE: {baseScore}')
logging.info('-'*80)
foodLeft = currentGameState.getNumFood()
self.setInitialFood(foodLeft)
logging.info(f'{self.agentLogPrefix} Food left on board: {foodLeft}')
# Useful information you can extract from a GameState (pacman.py)
successorGameState = currentGameState.generatePacmanSuccessor(action)
gridWidth, gridHeight = currentGameState.data.layout.width, currentGameState.data.layout.height
gridArea = (gridWidth-2) * (gridHeight-2)
longestManDist = gridHeight + gridWidth - 2
gridWalls = currentGameState.getWalls().asList()
externalWalls = gridWidth*2 + (gridHeight-2)*2
internalWalls = len(gridWalls) - externalWalls
newPos = successorGameState.getPacmanPosition()
pacX, pacY = newPos
logging.info(f'{self.agentLogPrefix} New position: {newPos}')
capsulePositions = currentGameState.getCapsules()
gridFood = successorGameState.getFood().asList()
if currentGameState.hasFood(pacX, pacY):
logging.info(f'{self.agentLogPrefix} Food reward of +50 applied')
rawScore = baseScore + 50
else:
rawScore = baseScore
if action == 'Stop':
logging.info(f'{self.agentLogPrefix} Stop penalty of -80 applied')
rawScore -= 50
if self.detectDeadEnd(successorGameState, pacX, pacY):
logging.info(f'{self.agentLogPrefix} Deadend penalty of -500 applied')
rawScore -= 1000
if self.previousSpace == newPos:
logging.info(f'{self.agentLogPrefix} Revisted space penatly of -50 applied')
rawScore -= 50
newGhostStates = successorGameState.getGhostStates()
newGhostPositions = successorGameState.getGhostPositions()
logging.info(f'{self.agentLogPrefix} Ghost positions: {newGhostPositions}')
if newPos in newGhostPositions:
rawScore -= 999999
newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]
logging.info(f'{self.agentLogPrefix} Scared timer: {newScaredTimes}')
# function that takes positions of ghosts and pacman; RETURNS penalty for ghosts nearby
nearestGhost, ghostDist, ghostWeight = self.calcGhostCost(newGhostPositions, pacX, pacY, longestManDist)
logging.info(f'{self.agentLogPrefix} Ghost distance cost: {ghostWeight}')
# final score for successor will be weighted by distance to ghosts, capsules, adjacent food and distant food
scaredGhostsNearby = [ghost.getPosition() for ghost in newGhostStates if ghost.scaredTimer > 15 and ghostDist < 10]
logging.info(f'{self.agentLogPrefix} Scared ghosts nearby: {scaredGhostsNearby}')
if nearestGhost in scaredGhostsNearby:
rawScore += ghostWeight
else:
rawScore += -ghostWeight
# function defined above that takes positions of capsules, pacman, and navigable space; RETURNS reward for going to capsules
nearestCapsule, capsuleDist, capsuleWeight = self.calcCapsuleCost(capsulePositions, pacX, pacY, gridArea-internalWalls, longestManDist)
logging.info(f'{self.agentLogPrefix} Capusle distance cost: {capsuleWeight}')
rawScore += capsuleWeight
# function defined above that takes positions of food and pacman; RETURNS reward for going towards food
nearestFood, foodDist, nearestFoodWeight = self.calcFoodCost(gridFood, pacX, pacY, longestManDist)
logging.info(f'{self.agentLogPrefix} Food distance cost: {nearestFoodWeight}')
rawScore += nearestFoodWeight
logging.info(f'{self.agentLogPrefix} Final score for {action}: {rawScore}')
return rawScore
def scoreEvaluationFunction(currentGameState):
"""
This default evaluation function just returns the score of the state.
The score is the same one displayed in the Pacman GUI.
This evaluation function is meant for use with adversarial search agents
(not reflex agents).
"""
return currentGameState.getScore()
class MultiAgentSearchAgent(Agent):
"""
This class provides some common elements to all of your
multi-agent searchers. Any methods defined here will be available
to the MinimaxPacmanAgent, AlphaBetaPacmanAgent & ExpectimaxPacmanAgent.
You *do not* need to make any changes here, but you can if you want to
add functionality to all your adversarial search agents. Please do not
remove anything, however.
Note: this is an abstract class: one that should not be instantiated. It's
only partially specified, and designed to be extended. Agent (game.py)
is another abstract class.
"""
def __init__(self, evalFn = 'scoreEvaluationFunction', depth = '2'):
self.index = 0 # Pacman is always agent index 0
self.evaluationFunction = util.lookup(evalFn, globals())
self.depth = int(depth)
self.agentLogPrefix = {0: 'MINIMAX AGENT:', 1: 'ALPHABETA AGENT:'}
self.depthAlpha = {}
self.depthBeta = {}
class MinimaxAgent(MultiAgentSearchAgent):
"""
Your minimax agent (question 2)
"""
def getAction(self, gameState):
"""
Returns the minimax action from the current gameState using self.depth
and self.evaluationFunction.
Here are some method calls that might be useful when implementing minimax.
gameState.getLegalActions(agentIndex):
Returns a list of legal actions for an agent
agentIndex=0 means Pacman, ghosts are >= 1
gameState.generateSuccessor(agentIndex, action):
Returns the successor game state after an agent takes an action
gameState.getNumAgents():
Returns the total number of agents in the game
gameState.isWin():
Returns whether or not the game state is a winning state
gameState.isLose():
Returns whether or not the game state is a losing state
"""
"*** YOUR CODE HERE ***"
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[0]} NEW GAME STATE')
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[0]} Number of agents in game state: {gameState.getNumAgents()}')
legalActions = gameState.getLegalActions(0)
if 'Stop' in legalActions:
legalActions.remove('Stop')
logging.info(f'{self.agentLogPrefix[0]} Legal actions from current game state: {legalActions}')
bestAction = None
maxValue = -math.inf
for action in legalActions:
newState = gameState.generateSuccessor(0, action)
minimaxScore = self.minimaxRecursion(newState, 0, False, 1)
if minimaxScore > maxValue:
maxValue = minimaxScore
bestAction = action
logging.info(f'{self.agentLogPrefix[0]} Pacman decided going {bestAction} has the best score of {maxValue}')
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[0]} ACTION CHOSEN: {bestAction}') # swap random with bestAction
logging.info('-'*80)
return bestAction # swap random with bestAction
util.raiseNotDefined()
def minimaxRecursion(self, gameState, depth, maximizerTurn, minimizerTurn):
try:
# check if recursion depth is 0 or if game is win/lose condition | terminal state
if (depth == self.depth) or (gameState.isWin()) or (gameState.isLose()) or (len(gameState.getLegalActions(0)) == 0):
terminalScore = self.evaluationFunction(gameState) # gameState.getScore()
logging.info(f'{self.agentLogPrefix[0]} Score is {terminalScore} at terminal state')
return terminalScore
else:
if maximizerTurn: # maximizing agent's turn
logging.info(f'{self.agentLogPrefix[0]} Maximizing agents turn at depth {depth}')
agent = 0
value = -math.inf
legalActions = gameState.getLegalActions(agent)
if 'Stop' in legalActions:
legalActions.remove('Stop')
for action in legalActions: # iterate over each possible successor state / action
nextState = gameState.generateSuccessor(agent, action)
value = max(value, self.minimaxRecursion(nextState, depth, False, minimizerTurn+1)) # recursion returning NoneType
return value
else: # minimizing agent's turn
agent = minimizerTurn
logging.info(f'{self.agentLogPrefix[0]} It is now ghost #{minimizerTurn} turn')
value = math.inf
legalActions = gameState.getLegalActions(agent)
if minimizerTurn < (gameState.getNumAgents() - 1):
logging.info(f'{self.agentLogPrefix[0]} Minimizing agent {minimizerTurn} turn at depth {depth}')
for action in legalActions: # iterate over each possible successor state / action
nextState = gameState.generateSuccessor(agent, action)
value = min(value, self.minimaxRecursion(nextState, depth, False, minimizerTurn+1)) # recursion returning NoneType
return value
else:
logging.info(f'{self.agentLogPrefix[0]} Last minimizing agent action for this turn at depth {depth}')
for action in legalActions: # iterate over each possible successor state / action
nextState = gameState.generateSuccessor(agent, action)
value = min(value, self.minimaxRecursion(nextState, depth+1, True, 0)) # recursion returning NoneType
return value
# error handling block
except Exception as e:
logging.exception('-'*80)
logging.exception(f'{self.agentLogPrefix[0]} - {traceback.print_exc(file=sys.stdout)} - {e}')
logging.exception('-'*80)
class AlphaBetaAgent(MultiAgentSearchAgent):
"""
Your minimax agent with alpha-beta pruning (question 3)
"""
def getAction(self, gameState):
"""
Returns the minimax action using self.depth and self.evaluationFunction
"""
"*** YOUR CODE HERE ***"
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[1]} NEW GAME STATE')
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[1]} Number of agents in game state: {gameState.getNumAgents()}')
legalActions = gameState.getLegalActions(0)
if 'Stop' in legalActions:
legalActions.remove('Stop')
logging.info(f'{self.agentLogPrefix[1]} Legal actions from current game state: {legalActions}')
bestAction = None
bestValue = -math.inf
alpha = -math.inf
beta = math.inf
for action in legalActions:
newState = gameState.generateSuccessor(0, action)
alphaBetaScore = self.alphaBetaRecursion(newState, 0, False, 1, alpha, beta)
alpha = max(alphaBetaScore, alpha)
if alphaBetaScore > bestValue:
bestValue = alphaBetaScore
bestAction = action
logging.info(f'{self.agentLogPrefix[1]} Pacman decided going {bestAction} has the best score of {bestValue}')
logging.info('-'*80)
logging.info(f'{self.agentLogPrefix[1]} ACTION CHOSEN: {bestAction}') # swap random with bestAction
logging.info('-'*80)
return bestAction # swap random with bestAction
util.raiseNotDefined()
def alphaBetaRecursion(self, gameState, depth, maximizerTurn, minimizerTurn, alpha, beta):
try:
# check if recursion depth is 0 or if game is win/lose condition | terminal state
if (depth == self.depth) or (gameState.isWin()) or (gameState.isLose()) or (len(gameState.getLegalActions(0)) == 0):
terminalScore = self.evaluationFunction(gameState) # gameState.getScore()
logging.info(f'{self.agentLogPrefix[1]} Score is {terminalScore} at terminal state')
return terminalScore
else:
# if depth not in self.depthAlpha:
# self.depthAlpha[depth] = -math.inf
# if depth not in self.depthBeta:
# self.depthBeta[depth] = math.inf
if maximizerTurn: # maximizing agent's turn
logging.info(f'{self.agentLogPrefix[1]} Maximizing agents turn at depth {depth}')
agent = 0
maxValue = -math.inf
legalActions = gameState.getLegalActions(agent)
if 'Stop' in legalActions:
legalActions.remove('Stop')
for action in legalActions: # iterate over each possible successor state / action
logging.info(f'{self.agentLogPrefix[1]} Maximizing agent can take action to go {action}')
nextState = gameState.generateSuccessor(agent, action)
value = self.alphaBetaRecursion(nextState, depth, False, minimizerTurn+1, alpha, beta) # recursion returning NoneType
maxValue = max(maxValue, value)
alpha = max(alpha, value)
logging.info(f'{self.agentLogPrefix[1]} Alpha is equal to {alpha}')
logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {alpha} to mins {beta}')
if beta < maxValue:
logging.info(f'{self.agentLogPrefix[1]} Branch pruned at depth {depth} for max {action}')
return maxValue
return maxValue
# failed attempt at using class attribute to store dictionary of alpha and beta by depth
# for action in legalActions: # iterate over each possible successor state / action
# nextState = gameState.generateSuccessor(agent, action)
# value = max(self.depthAlpha[depth], self.alphaBetaRecursion(nextState, depth, False, minimizerTurn+1, self.depthAlpha[depth], self.depthBeta[depth])) # recursion returning NoneType
# logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {value} to mins {self.depthBeta[depth]}')
# if value >= self.depthBeta[depth]:
# return value
# self.depthAlpha[depth] = max(self.depthAlpha[depth], value)
# logging.info(f'{self.agentLogPrefix[1]} New alpha is equal to {self.depthAlpha[depth]}')
# return value
else: # minimizing agent's turn
agent = minimizerTurn
logging.info(f'{self.agentLogPrefix[1]} Minimizing agent {minimizerTurn} turn at depth {depth}')
minValue = math.inf
legalActions = gameState.getLegalActions(agent)
logging.info(f'{self.agentLogPrefix[1]} Minimizing agent {minimizerTurn} can take these actions: {legalActions}')
if minimizerTurn < (gameState.getNumAgents() - 1):
for action in legalActions: # iterate over each possible successor state / action
logging.info(f'{self.agentLogPrefix[1]} Minimizing agent is considering going {action}')
nextState = gameState.generateSuccessor(agent, action)
value = self.alphaBetaRecursion(nextState, depth, False, minimizerTurn+1, alpha,beta) # recursion returning NoneType
minValue = min(value, minValue)
beta = min(value, beta)
logging.info(f'{self.agentLogPrefix[1]} Beta is equal to {beta}')
logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {alpha} to mins {beta}')
if minValue < alpha:
logging.info(f'{self.agentLogPrefix[1]} Branch pruned at depth {depth} for min {action}')
return minValue
return minValue
else:
logging.info(f'{self.agentLogPrefix[1]} Last minimizing agent action for this turn at depth {depth}')
for action in legalActions: # iterate over each possible successor state / action
logging.info(f'{self.agentLogPrefix[1]} Minimizing agent is considering going {action}')
nextState = gameState.generateSuccessor(agent, action)
value = self.alphaBetaRecursion(nextState, depth+1, True, 0, alpha, beta) # recursion returning NoneType
minValue = min(value, minValue)
beta = min(value, beta)
logging.info(f'{self.agentLogPrefix[1]} Beta is equal to {beta}')
logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {alpha} to mins {beta}')
if minValue < alpha:
logging.info(f'{self.agentLogPrefix[1]} Branch pruned at depth {depth} for min {action}')
return minValue
return minValue
# failed attempt at using class attribute to store dictionary of alpha and beta by depth
# if minimizerTurn < (gameState.getNumAgents() - 1):
# logging.info(f'{self.agentLogPrefix[1]} Minimizing agent {minimizerTurn} turn at depth {self.depthBeta[depth]}')
# for action in legalActions: # iterate over each possible successor state / action
# nextState = gameState.generateSuccessor(agent, action)
# value = min(self.depthBeta[depth], self.alphaBetaRecursion(nextState, depth, False, minimizerTurn+1, self.depthAlpha[depth], self.depthBeta[depth])) # recursion returning NoneType
# logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {self.depthAlpha[depth]} to mins {value}')
# if value <= self.depthAlpha[depth]:
# return value
# self.depthBeta[depth] = min(value, self.depthBeta[depth])
# logging.info(f'{self.agentLogPrefix[1]} New beta is equal to {self.depthBeta[depth]}')
# return value
# else:
# logging.info(f'{self.agentLogPrefix[1]} Last minimizing agent action for this turn at depth {self.depthBeta[depth]}')
# for action in legalActions: # iterate over each possible successor state / action
# nextState = gameState.generateSuccessor(agent, action)
# value = min(self.depthBeta[depth], self.alphaBetaRecursion(nextState, depth+1, True, 0, self.depthAlpha[depth], self.depthBeta[depth])) # recursion returning NoneType
# logging.info(f'{self.agentLogPrefix[1]} Comparing maxs {self.depthAlpha[depth]} to mins {value}')
# if value <= self.depthAlpha[depth]:
# return value
# self.depthBeta[depth] = min(value, self.depthBeta[depth])
# logging.info(f'{self.agentLogPrefix[1]} New beta is equal to {self.depthBeta[depth]}')
# return value
# error handling block
except Exception as e:
logging.exception('-'*80)
logging.exception(f'{self.agentLogPrefix[1]} - {traceback.print_exc(file=sys.stdout)} - {e}')
logging.exception('-'*80)
util.raiseNotDefined()
class ExpectimaxAgent(MultiAgentSearchAgent):
"""
Your expectimax agent (question 4)
"""
def getAction(self, gameState):
"""
Returns the expectimax action using self.depth and self.evaluationFunction
All ghosts should be modeled as choosing uniformly at random from their
legal moves.
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
def betterEvaluationFunction(currentGameState):
"""
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function (question 5).
DESCRIPTION: <write something here so we know what you did>
"""
"*** YOUR CODE HERE ***"
util.raiseNotDefined()
# Abbreviation
better = betterEvaluationFunction