-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
507 lines (438 loc) · 20.6 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import torch
import logging
import os
from logging import handlers
# from moviepy.editor import *
import pandas as pd
import cv2,json
import sys
import numpy as np
import shutil
import random,time
def generate_one_mone():
one = torch.FloatTensor([1])
mone = one * -1
def get_logger(LOG_ROOT, level=logging.DEBUG, back_count=0,cmd_stream=False):
"""
:brief 日志记录
:param log_filename:
:param level:
:param back_count:
:return: logger
"""
logger = logging.getLogger("logger.log")
logger.setLevel(level)
log_path = os.path.join(LOG_ROOT, "logs")
if not os.path.exists(log_path):
os.mkdir(log_path)
log_file_path = os.path.join(log_path, "logger.log")
# log输出格式
formatter = logging.Formatter('%(asctime)s:\n %(message)s')
# 输出到文件
fh = logging.handlers.TimedRotatingFileHandler(
filename=log_file_path,
backupCount=back_count,
encoding='utf-8')
fh.setLevel(level)
# 添加到logger对象里
logger.addHandler(fh)
# 输出到控制台
if cmd_stream:
ch = logging.StreamHandler()
ch.setLevel(level)
logger.addHandler(ch)
return logger
def genClipCsvFile(video_name,clips_array):
'''
:param video_name: string, The input clip video name(no suffix)
:param clips_array: numpy format. contain the start and end point of each clip for the name video
:return:
'''
out_dir = r"D:\download_cache\PMXmodel\CLIPindex"
df = pd.DataFrame(clips_array)
df.to_csv(os.path.join(out_dir,video_name+".csv"),index=None,header=None)
return video_name
def ClipOriVideo():
video_dir = r"D:\download_cache\PMXmodel\VIDEOfile"
index_dir = r"D:\download_cache\PMXmodel\finishClip"
output_dir = r"D:\download_cache\PMXmodel\VIDEOclips"
for video_name in os.listdir(index_dir):
video_name = video_name.split(".")[0]
video_path = os.path.join(video_dir, video_name + ".mp4")
clip_index = pd.read_csv(os.path.join(index_dir,video_name+".csv"),header=None)
for num,clip in enumerate(clip_index.values.tolist()):
# [start frame, end frame]
start_f, end_f = clip # e.g. 0, 123
videoCapture = cv2.VideoCapture(video_path)
fps = videoCapture.get(cv2.CAP_PROP_FPS)
width = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)))
height = (int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
size = (width, height) # 保存视频的大小
videoWriter = cv2.VideoWriter(os.path.join(output_dir,video_name+"_"+str(num)+".avi"), cv2.VideoWriter_fourcc('X', 'V', 'I', 'D'), fps, size)
i = 0
while True:
success, frame = videoCapture.read()
if success:
if i < int(start_f):
i += 1
continue
elif (i >= int(start_f) and i <= int(end_f)):
videoWriter.write(frame)
i += 1
else:
break
else:
print("error")
break
videoCapture.release()
def combineTwoVideo_height(v1_path=r'D:\work\OpenMMD1.0\examples\ori_pose.avi',v2_path=r'D:\work\OpenMMD1.0\examples\smooth_pose13_3.avi',combine_path=r'D:\work\OpenMMD1.0\examples\combine_pose.avi'):
import cv2
import numpy as np
videoLeftUp = cv2.VideoCapture(v1_path)
videoLeftDown = cv2.VideoCapture(v2_path)
# videoRightUp = cv2.VideoCapture('./res/2_003_015.mp4')
# videoRightDown = cv2.VideoCapture('./res/2_003_016.mp4')
fps = videoLeftUp.get(cv2.CAP_PROP_FPS)
width = (int(videoLeftUp.get(cv2.CAP_PROP_FRAME_WIDTH)))
height = (int(videoLeftUp.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(combine_path, cv2.VideoWriter_fourcc('X', 'V', 'I', 'D'), fps, (width, height*2))
successLeftUp, frameLeftUp = videoLeftUp.read()
successLeftDown, frameLeftDown = videoLeftDown.read()
# successRightUp, frameRightUp = videoRightUp.read()
# successRightDown, frameRightDown = videoRightDown.read()
while successLeftUp and successLeftDown:
frameLeftUp = cv2.resize(frameLeftUp, (width, height), interpolation=cv2.INTER_CUBIC)
frameLeftDown = cv2.resize(frameLeftDown, (width, height), interpolation=cv2.INTER_CUBIC)
frame = np.vstack((frameLeftUp, frameLeftDown))
# frame = np.hstack(frameLeftDown,frameLeftUp)
videoWriter.write(frame)
successLeftUp, frameLeftUp = videoLeftUp.read()
successLeftDown, frameLeftDown = videoLeftDown.read()
videoWriter.release()
videoLeftUp.release()
videoLeftDown.release()
def combineTwoVideo_width(v1_path=r'D:\work\OpenMMD1.0\examples\ori_pose.avi',v2_path=r'D:\work\OpenMMD1.0\examples\smooth_pose13_3.avi',combine_path=r'D:\work\OpenMMD1.0\examples\combine_pose.avi'):
import cv2
import numpy as np
videoLeftUp = cv2.VideoCapture(v1_path)
videoLeftDown = cv2.VideoCapture(v2_path)
# videoRightUp = cv2.VideoCapture('./res/2_003_015.mp4')
# videoRightDown = cv2.VideoCapture('./res/2_003_016.mp4')
fps = videoLeftUp.get(cv2.CAP_PROP_FPS)
width = (int(videoLeftUp.get(cv2.CAP_PROP_FRAME_WIDTH)))
height = (int(videoLeftUp.get(cv2.CAP_PROP_FRAME_HEIGHT)))
videoWriter = cv2.VideoWriter(combine_path, cv2.VideoWriter_fourcc('X', 'V', 'I', 'D'), fps, (width*2, height))
successLeftUp, frameLeftUp = videoLeftUp.read()
successLeftDown, frameLeftDown = videoLeftDown.read()
# successRightUp, frameRightUp = videoRightUp.read()
# successRightDown, frameRightDown = videoRightDown.read()
frame_num = 0
while successLeftUp and successLeftDown:
frameLeftUp = cv2.resize(frameLeftUp, (width, height), interpolation=cv2.INTER_CUBIC)
frameLeftDown = cv2.resize(frameLeftDown, (width, height), interpolation=cv2.INTER_CUBIC)
frame = np.hstack((frameLeftDown,frameLeftUp))
videoWriter.write(frame)
successLeftUp, frameLeftUp = videoLeftUp.read()
successLeftDown, frameLeftDown = videoLeftDown.read()
if frame_num == 600:
break
frame_num+=1
print(frame_num)
videoWriter.release()
videoLeftUp.release()
videoLeftDown.release()
def vgg_preprocess(x):
x = 255.0 * (x + 1.0)/2.0
x[:,:,:,0] -= 103.939
x[:,:,:,1] -= 116.779
x[:,:,:,2] -= 123.68
return x
def printProgress(step,test,train_loss,time=None):
s = str(step) + "," + str(test)
if(isinstance(train_loss,list) or isinstance(train_loss,np.ndarray)):
for i in range(len(train_loss)):
s += "," + str(train_loss[i])
else:
s += "," + str(train_loss)
if(time is not None):
s += "," + str(time)
print(s)
sys.stdout.flush()
def smooth(csv_path,weight=0.85):
data = pd.read_csv(csv_path,header=None)
x = list(data.pop(0))
scalar = list(data.pop(1))
last = scalar[0]
smoothed = []
for point in scalar:
smoothed_val = last * weight + (1 - weight) * point
smoothed.append(smoothed_val)
last = smoothed_val
import matplotlib.pyplot as plt
plt.plot(x, smoothed)
plt.show()
# save = pd.DataFrame({'Step':data['Step'].values,'Value':smoothed})
# save.to_csv('smooth_'+csv_path)
def combine_record(folder):
files = os.listdir(folder)
files.sort(key=lambda x: int(x.split(".")[0]))
for idx,file in enumerate(files):
if idx==0:
a = pd.read_csv(os.path.join(folder,file),header=None)
else:
a = pd.concat([a,pd.read_csv(os.path.join(folder,file),header=None)])
a.to_csv("mse8000.csv",header=None,index=None)
def mse(img1_path,img2_path):
img1 = cv2.imread(img1_path)
img2 = cv2.imread(img2_path)
img1 = (img1 / 255.0 - 0.5) * 2.0
img2 = (img2 / 255.0 - 0.5) * 2.0
return np.mean(np.square(img1 - img2))
# def main():
# left_base = r"D:\download_cache\PMXmodel\VIDEOfile"
# right_base = r"D:\download_cache\PMXmodel\OUTPUTclips"
# right_vs = os.listdir(right_base)
# right_vs.sort(key=lambda x:int(x[:-4]))
# left_vs = os.listdir(left_base)
# left_vs.sort(key=lambda x: int(x.split("_")[-1][:-4]))
# for idx in range(len(left_vs)):
# print(idx)
# if idx<36:
# continue
# else:
# left = left_vs[idx]
# right = right_vs[idx]
# out = "c_"+right[:-4]+".avi"
# combineTwoVideo_height(os.path.join(left_base,left),os.path.join(right_base,right),os.path.join(right_base,out))
def get_file_encoding(file_path):
try:
f = open(file_path, "rb")
fbytes = f.read()
f.close()
except BaseException:
f = open(file_path, "rb",encoding='shift-jis')
fbytes = f.read()
f.close()
# raise Exception("unknown encoding!")
codelst = ('utf_8', 'shift-jis')
for encoding in codelst:
try:
fstr = fbytes.decode(encoding) # bytes文字列から指定文字コードの文字列に変換
fstr = fstr.encode('utf-8') # uft-8文字列に変換
return encoding
except BaseException:
pass
raise Exception("unknown encoding!")
def video2frames(video_path,out_dir):
video_base_name = os.path.basename(video_path)[:-4]
v = cv2.VideoCapture(video_path)
flag, frame = v.read()
frame_num = 0
while flag:
cv2.imwrite(os.path.join(out_dir,video_base_name+"_"+str(frame_num)+".jpg"),frame)
frame_num += 1
flag, frame = v.read()
def json2npy(video_name,json_dir,npy_dir):
json_files = os.listdir(json_dir)
json_files.sort(key=lambda x:int(x.split("_")[2]))
cnt = 0
for json_file in json_files:
with open(os.path.join(json_dir,json_file), encoding="utf-8") as f:
content = json.load(f)['people'][0]['pose_keypoints_2d']
tmp = []
for idx in range(0, len(content)-6, 3):
x, y, _ = content[idx], content[idx + 1], content[idx + 2]
tmp.append([x, y])
np.save(os.path.join(npy_dir,video_name+"_"+str(cnt)+".npy"),np.asarray(tmp))
cnt+=1
def prepareForPoseTransfer(test_dir,testK_dir,refernce_image):
name_A = os.path.basename(refernce_image)
shutil.copy(refernce_image,os.path.join(test_dir,name_A))
from data_prepare.generate_pose_map_anime import compute_pose_single
# compute_pose_single(os.path.join(test_dir[:-4]+"tmpK",name_A+".npy"),testK_dir)
shutil.copy(r"D:\work\pycharmproject\Real2Animation-video-generation\demo\testK\animeImage.jpg.npy",os.path.join(testK_dir,name_A+".npy"))
files = os.listdir(test_dir)[1:]
files.sort(key= lambda x:int(x.split("_")[-1][:-4]))
tmp = []
for file in files:
tmp.append([name_A,file])
df = pd.DataFrame(tmp,columns=["from","to"])
df.to_csv(os.path.join(os.path.dirname(test_dir),"anime-pairs-test.csv"),index=None)
def kps_Normalize_single(img_r,img_r_new, kps_r, kps_a,output_dir,reference_dir,vis=None,real_bone_num=None,video_size=(1280,720)):
# kps_r = r"D:\download_cache\anime_data2\trainK", kps_a = r"D:\download_cache\anime_data2\tmpK",
# output_dir = "D:/download_cache/anime_data2/normK/", vis = None, real_bone = None
# default to "D:\\download_cache\\anime_data\\vis_img\\"
# img_r_new = "\\".join(img_r.split("\\")[:-1])+"\\testN"
kpss = os.listdir(kps_r)
kpss.sort(key=lambda x:int(x.split("_")[2][:-4]))
img_nums = len(kpss)
# max_vis = vis_num
if real_bone_num is None:
r_bone = np.load(os.path.join(kps_r,kpss[0]))
else:
r_bone = np.load(os.path.join(kps_r,kpss[real_bone_num]))
bones =None
for idx in range(img_nums):
real_kps = np.load(os.path.join(kps_r, kpss[idx]))
#TODO hard-code debug
for item in real_kps:
item[0] = item[0]/video_size[0]*1920
item[1] = item[1]/video_size[1]*1080
anime_kps = np.load(kps_a)
# 0-center 1-groove 2-r_leg_IK 3-l_leg_IK 4-upperbody 5-upperbody2 6-neck 7-head 8-r_eye 9-l_eye 10-r_shoulder
# 11-arm 12-r_elbow 13-r_hand 14-l_shoulder 15-l_arm 16-l_elbow 17-l_hand 18-lowerbody 19-r_leg 20-r_knee 21-r_ankle 22-l_leg
# 23-l_knee 24-l_ankle (23,2)
# TODO bad bone now. ##### not connect to anime pose estimation now ########
from data_prepare.genWarpDataset import getBoneFromCsv, Map_3Dpoints_2D,eucliDist,kps_Normalize
bones = getBoneFromCsv(os.path.join("D:\download_cache\PMXmodel\CSVfile", "RyukoMatoi.csv"))
joints = []
for i, _joint in enumerate(bones[:-2]):
_, _x, _y, _z = _joint
joints.append(np.asarray([_x, _y, _z]))
bones = Map_3Dpoints_2D(joints, vis=False)
anime_length = [eucliDist(bones[19],bones[21])*0.65,eucliDist(bones[11],bones[13])*0.85,eucliDist((bones[19]+bones[22])/2.0,bones[7])*0.8,eucliDist(bones[11],bones[15])*0.88]
# TODO bad bone now. ##### not connect to anime pose estimation now ########
real_length = [max(eucliDist(r_bone[8],r_bone[9])+eucliDist(r_bone[9],r_bone[10]),eucliDist(r_bone[11],r_bone[12])+eucliDist(r_bone[12],r_bone[13])),
max(eucliDist(r_bone[2], r_bone[3]) + eucliDist(r_bone[3], r_bone[4]), eucliDist(r_bone[5], r_bone[6]) + eucliDist(r_bone[6], r_bone[7])),
eucliDist((r_bone[8]+r_bone[9])/2.0, r_bone[1]),
eucliDist(r_bone[2], r_bone[5])]
proportation = []
for x,y in zip(anime_length,real_length):
proportation.append(x/y)
modified_kps = kps_Normalize(real_kps,anime_kps,ref=proportation,scale_level=0.9,special_test=True)
img_size = (192,256)
img_ori = cv2.imread(os.path.join(img_r,kpss[idx][:-4]+".jpg"))
img_ori = cv2.resize(img_ori, (1920, 1080), interpolation=cv2.INTER_CUBIC)
center_point = modified_kps[1,:]
center_x, center_y = center_point
if int(center_x) - 405 < 0:
crop_l = 0
crop_r = 810
elif int(center_x) + 405 > 1920:
crop_l = 1920-810
crop_r = 1920
else:
crop_l = int(center_x) - 405
crop_r = int(center_x) + 405
cropped = img_ori[0:1080,crop_l:crop_r,:] # 裁剪坐标为[y0:y1, x0:x1]
normalized = cv2.resize(cropped, img_size, interpolation=cv2.INTER_CUBIC)
cv2.imwrite(os.path.join(img_r_new,kpss[idx][:-4]+".jpg"), normalized)
center_point = modified_kps[1, :]
center_x, center_y = center_point
if int(center_x) - 405 < 0:
crop_l = 0
crop_r = 810
elif int(center_x) + 405 > 1920:
crop_l = 1920 - 810
crop_r = 1920
else:
crop_l = int(center_x) - 405
crop_r = int(center_x) + 405
for kps in modified_kps:
kps[0] = kps[0] - crop_l
kps[0] = kps[0] / 810 * img_size[0]
kps[1] = kps[1] / 1080 * img_size[1]
np.save(os.path.join(output_dir,kpss[idx][:-4]+".jpg"+".npy"), modified_kps)
imgA = cv2.imread(os.path.join(reference_dir,"Anime_Image.jpg")) # TODO hard code.
imgA_cropped = imgA[0:1080, crop_l:crop_r,:]
normalizedA = cv2.resize(imgA_cropped, img_size, interpolation=cv2.INTER_CUBIC)
cv2.imwrite(os.path.join(reference_dir, "animeImage.jpg"), normalizedA)
if vis:
for _joint in modified_kps:
_x, _y = _joint
_x, _y = int(_x),int(_y)
cv2.circle(normalizedA, center=(int(_x), int(_y)), color=(255, 0, 0), radius=3, thickness=2)
line_list = [[0,1],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[1,11],[8,9],[9,10],[11,12],[12,13],[0,14],[0,15]]
for lines in line_list:
cv2.line(normalizedA,(int(modified_kps[lines[0]][0]),int(modified_kps[lines[0]][1])),(int(modified_kps[lines[1]][0]),int(modified_kps[lines[1]][1]))
,color=(255,0,0),thickness=4)
# cv2.imwrite("D:\\download_cache\\anime_data\\vis_img\\" + outname, img)
cv2.imwrite(os.path.join("\\".join(img_r.split("\\")[:-1])+"\\vis",kpss[idx][:-4]+".jpg"), normalizedA)
print(os.path.join("\\".join(img_r.split("\\")[:-1])+"\\vis",kpss[idx][:-4]+".jpg"))
def extracted_frame(fr_n,video):
# out_path = os.path.join(r"D:\download_cache\PMXmodel\real_shape","_".join(os.path.basename(video).split("_")[:-1])+".jpg")
out_path = r"D:\work\OpenMMD1.0\examples\json_out_3d2\test.jpg"
v = cv2.VideoCapture(video)
flag, frame = v.read()
frame_num = 0
while flag:
if frame_num == fr_n:
cv2.imwrite(out_path,frame)
break
frame_num += 1
flag, frame = v.read()
def motion_check():
"dance_39_9_Teto_11"
"dance_39_9_11"
# Teto,KagamineRin YYBHiganbanamiku Vigna PaleEyes Artemis IA KagamineRin SatsukiKiryuin AnsieNight Bakugou,pmdfile1,Kaito,KizunaAi
# dance_24_1 偏移事件
# 2,lingmeng,madoka2019,MilkStraw,neru,JabamiYumeko,Joker,Kogawa,LEOTHELION,Miku,NazonoHeroine,Ochako,RyukoMatoi,TDALacyHaku,TDAPearlSouffleMiku,
#
file_dir = r"D:\download_cache\anime_data\vis"
out_dir = r"D:\download_cache\anime_data\motion_check"
import random
file_list = os.listdir(file_dir)
random.shuffle(file_list)
for file in file_list:
model_name = file.split("_")[3]
# delete_list = ["Teto", "KagamineRin","YYBHiganbanamiku","Vigna","PaleEyes","Artemis","IA","KagamineRin","SatsukiKiryuin","AnsieNight","Bakugou"
# , "pmdfile1", "Kaito", "KizunaAi"]
# if model_name in delete_list:
# continue
# if dance_name == "dance_46_2" and end_name=="8":
if model_name in ["madoka2019", "RyukoMatoi", "neru","yousa"]:
dance_name = "_".join(file.split("_")[:3]) + "_" + file.split("_")[-1]
file_name = os.path.join(file_dir, file)
out_name = os.path.join(out_dir, dance_name)
# out_name = os.path.join(out_dir,file)
shutil.copy(file_name, out_name)
# np.random.shuffle(file_dir)
def getDatasetUsingClean():
chosen_model = ["madoka2019", "RyukoMatoi", "neru","yousa","lingmeng","2","MilkStraw","Joker","Miku","MilkStraw","NazonoHeroine",
"Ochako","TDALacyHaku","LEOTHELION"] #14
motion_files = os.listdir(r"D:\download_cache\anime_data\motion_check")
kps_dir = r"D:\download_cache\anime_data\normK"
kps_out = r"D:\download_cache\anime_data\normK_s"
img_dir = r"D:\download_cache\anime_data\trainN"
img_out = r"D:\download_cache\anime_data\train"
for motion in motion_files:
for model in chosen_model:
try:
filename = "_".join(motion.split("_")[:-1])+"_"+model+"_"+motion.split("_")[-1]
shutil.copy(os.path.join(kps_dir,filename+".npy"),os.path.join(kps_out,filename+".npy"))
shutil.copy(os.path.join(img_dir, filename), os.path.join(img_out,filename))
except:
continue
def genVideoFromPoseTransfer(frame_dir,img_size=(192,256)):
frames = os.listdir(frame_dir)
width,height = img_size[0],img_size[1]
frames.sort(key= lambda x:int(x.split("_")[-2][:-4]))
videoWrite = cv2.VideoWriter(os.path.join(os.path.dirname(frame_dir),'test.mp4'), -1, 15, (width * 3, height)) # 写入对象:1.fileName 2.-1:表示选择合适的编码器 3.视频的帧率 4.视频的size
for idx,frame in enumerate(frames):
img = cv2.imread(os.path.join(frame_dir,frame))
img_used = img[:, width*2:, :]
videoWrite.write(img_used) # 写入方法 1.编码之前的图片数据
print(idx)
if __name__=="__main__":
# combineTwoVideo_width("D:\download_cache\PMXmodel\VIDEOclips\dance_10_8.avi","D:\download_cache\PMXmodel\OUTPUTclips\dance_10_8_GTGoku.avi","D:\download_cache\PMXmodel\compare.avi")
# clips80 = [[190,262],[390,433],[530,590],[650,716],[777,830],[945,1050],[1085,1230],[1380,4135],[1510,1570],[1640,1730],[2141,2185],[4195,4320],[4860,4925]
# ]
# genClipCsvFile("dance_20",clips80)
# main()
# ClipOriVideo()
# extracted_frame(137,r"D:\work\OpenMMD1.0\examples\json_out_3d2\sample.mkv")
getDatasetUsingClean()
# fps = 30
# imgs_dir = r"D:\download_cache\PMXmodel\real_shape"
# fourcc = cv2.VideoWriter_fourcc(*'MJPG')
# video_writer = cv2.VideoWriter("test.avi", fourcc, fps, (1920, 1080))
# # no glob, need number-index increasing
# imgs = os.listdir(imgs_dir)
# for i in imgs:
# if i.endswith(".jpg"):
# imgname = os.path.join(imgs_dir, i)
# frame = cv2.imread(imgname)
# frame = cv2.resize(frame,(1920, 1080))
# video_writer.write(frame)
#
# video_writer.release()