本项目基于paddle复现From Recognition to Cognition: Visual Commonsense Reasoning中所提出的r2c模型,该模型用于解决视觉常识推理(Visual Commonsense Reasoning)任务,即给模型一个图像、一些对象、一个问题,四个答案和四个原因,模型必须决定哪个答案是正确的,然后在提供四个原因选出答案的最合理解释。
下面提供一个例子进行说明:
对输入的图像、对象和问题 What is going to be happen next? ,模型需要选择答案d) 和原因d)。
论文地址:https://arxiv.org/abs/1811.10830
参考项目:https://github.com/rowanz/r2c
Q → A | QA → R | Q → AR | |
---|---|---|---|
原论文 | 63.8 | 67.2 | 43.1 |
复现精度 | 64.1 | 67.2 | 43.2 |
本项目所使用的数据集为 VCR ,由来自110K个电影场景的290K个多项选择的QA问题组成。
对于问题答案和原因,提供bert预训练好的特征,可从如下地址进行下载:
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_answer_train.h5
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_rationale_train.h5
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_answer_val.h5
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_rationale_val.h5
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_answer_test.h5
https://s3-us-west-2.amazonaws.com/ai2-rowanz/r2c/bert_da_rationale_test.h5
建议的数据结构为:
data/
|-- vcr1images/
| |-- VERSION.txt
| |-- movie name, like movieclips_A_Fistful_of_Dollars
| | |-- image files, like Sv_GcxkmW4Y@29.jpg
| | |-- metadata files, like Sv_GcxkmW4Y@29.json
|-- bert_feature/
| |-- bert_da_answer_train.h5
| |-- bert_da_rationale_train.h5
| |-- bert_da_answer_val.h5
| |-- bert_da_rationale_val.h5
| |-- bert_da_answer_test.h5
| |-- bert_da_rationale_test.h5
|-- train.jsonl
|-- val.jsonl
|-- test.jsonl
|-- README.md
可以自行修改文件地址,但是对应的要修改文件读取中文件路径。
- Python 3.7
- paddle 2.2.1
- paddlenlp
需要安装requirements.txt中库函数
pip install -r requirements.txt
对于Q→ A,运行如下命令:
python train.py -floader model/saves/flagship_answer
对于QA → R,运行如下命令:
python train.py -floader model/saves/flagship_rationale -relation
加载模型进行Q→ A测试,运行如下命令:
python eval.py -floader model/saves/flagship_answer
#注:这里需要保证模型的名字为best.pd(或者可以在utils/paddle_misc的restore_best_checkpointh函数中修改模型的名字)。
加载模型进行QA→ R测试,运行如下命令:
python eval.py -floader model/saves/flagship_rationale -relation
测试Q → AR效果,运行如下命令:
python eval_q2ar.py -answer_preds model/saves/flagship_answer/valpreds.npy -rationale_preds model/saves/flagship_rationale/valpreds.npy
想要进行一条数据的预测,需要将所需数据的json字典写入val_one.jsonl文件中,然后运行如下命令:
python predict.py -floader model/saves/flagship_answer
或者
python predict.py -floader model/saves/flagship_rationale -relation
Q→ A的输出结果如下:
val_labels [3] #答案的label
val_probs [[0.23186769 0.2635262 0.23137085 0.2732353 ]] #模型对四个回答的打分
Final val accuracy is 1.00000 #准确率
预训练最优模型下载:
链接: https://pan.baidu.com/s/1VeG64RFxoBbs1ivZUOkJ0g
提取码: c4ir
将对应模型放到对应的文件目录下即可。
|--data
|--dataloader
| |--__init__.py
| |--box_utils.py
| |--mask_utils.py
| |--vcr.py #加载数据
|--model
| |--multiatt
| | |--__init__.py
| | |--model.py #主模型
| | |--mask_softmax.py
| | |--BilinearMatrixAttention.py
| |--saves
| | |--flagship_answer
| | | |--best.pd
| | |--flagship_rationale
| | | |--best.pd
|--utils
| |--__init__.py
| |--detector.py #图像特征处理
| |--paddle_misc.py
| |--Resnet50.py
| |--Resnet50_imagnet.py
| |--torch_resnet50.pkl
|--train.py
|--eval.py #进行Q→ A和QA → R测试
|--eval_q2ar.py #进行Q → AR测试
|--config.py
|--predict.py #进行单个数据的测试
|--requirements.txt
模型训练的所有参数信息都在config.py中进行了详细的注释.
信息 | 说明 |
---|---|
发布者 | KiritoSSR |
时间 | 2021.12 |
框架版本 | Paddle2.2.1 |
应用场景 | 多模态 |
支持硬件 | GPU、CPU |