-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcore.py
220 lines (175 loc) · 7.18 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import logging
from typing import Iterable
from pathlib import Path
from trame.widgets import html
from trame_server.utils.namespace import Translator
from nrtk_explorer.library.filtering import FilterProtocol
from nrtk_explorer.library.dataset import (
get_dataset,
expand_hugging_face_datasets,
discover_datasets,
dataset_select_options,
)
from nrtk_explorer.library.debounce import debounce
from nrtk_explorer.library.app_config import process_config
from nrtk_explorer.app.images.images import Images
from nrtk_explorer.app.embeddings import EmbeddingsApp
from nrtk_explorer.app.export import ExportApp
from nrtk_explorer.app.transforms import TransformsApp
from nrtk_explorer.app.filtering import FilteringApp
from nrtk_explorer.app.applet import Applet
from nrtk_explorer.app import ui
import nrtk_explorer.test_data
import os
import random
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
html.Template.slot_names.add("before")
html.Template.slot_names.add("after")
DIR_NAME = os.path.dirname(nrtk_explorer.test_data.__file__)
DEFAULT_DATASETS = [
f"{DIR_NAME}/coco-od-2017/test_val2017.json",
]
NUM_IMAGES_DEFAULT = 500
NUM_IMAGES_DEBOUNCE_TIME = 0.3 # seconds
def dir_path(arg):
path = Path(arg).resolve()
if path.is_dir():
return path
else:
raise NotADirectoryError(arg)
# ---------------------------------------------------------
# Engine class
# ---------------------------------------------------------
config_options = {
"dataset": {
"flags": ["--dataset"],
"params": {
"nargs": "+",
"default": DEFAULT_DATASETS,
"help": "Path to the JSON file describing the image dataset",
},
},
"download": {
"flags": ["--download"],
"params": {
"action": "store_true",
"default": False,
"help": "Download Hugging Face Hub datasets instead of streaming them",
},
},
"repository": {
"flags": ["--repository"],
"params": {
"default": None,
"required": False,
"type": dir_path,
"help": "Path to the directory where exported datasets will be saved to",
},
},
}
class Engine(Applet):
def __init__(self, server=None, **kwargs):
super().__init__(server)
config = process_config(self.server.cli, config_options, **kwargs)
self.state.input_datasets = expand_hugging_face_datasets(
config["dataset"], not config["download"]
)
self.context.repository = config["repository"]
self.state.repository_datasets = [
str(path) for path in discover_datasets(self.context.repository)
]
self.state.all_datasets = self.state.input_datasets + self.state.repository_datasets
self.state.all_datasets_options = dataset_select_options(self.state.all_datasets)
self.state.current_dataset = self.state.all_datasets[0]
images = Images(server=self.server)
self._transforms_app = TransformsApp(
server=self.server.create_child_server(), images=images, **kwargs
)
self._embeddings_app = EmbeddingsApp(
server=self.server.create_child_server(),
images=images,
)
filtering_translator = Translator()
filtering_translator.add_translation("categories", "annotation_categories")
self._filtering_app = FilteringApp(
server=self.server.create_child_server(translator=filtering_translator),
)
self._export_app = ExportApp(
server=self.server.create_child_server(),
)
self._transforms_app.set_on_transform(self._embeddings_app.on_run_transformations)
self._embeddings_app.set_on_hover(self._transforms_app.on_image_hovered)
self._transforms_app.set_on_hover(self._embeddings_app.on_image_hovered)
self._filtering_app.set_on_apply_filter(self.on_filter_apply)
# Bind instance methods to controller
self.ctrl.on_server_reload = self._build_ui
self.ctrl.add("on_server_ready")(self.on_server_ready)
self.state.num_images = NUM_IMAGES_DEFAULT
self.state.num_images_max = 0
self.state.num_images_disabled = True
self.state.random_sampling = False
self.state.random_sampling_disabled = True
self.state.dataset_ids = []
self.state.hovered_id = None
def clear_hovered(**kwargs):
self.state.hovered_id = None
self.state.change("dataset_ids")(clear_hovered)
self._build_ui()
def on_server_ready(self, *args, **kwargs):
# Bind instance methods to state change
self.state.change("current_dataset")(self.on_dataset_change)
self.state.change("num_images")(
debounce(NUM_IMAGES_DEBOUNCE_TIME, self.state)(self.resample_images)
)
self.state.change("random_sampling")(self.resample_images)
self.on_dataset_change()
def on_dataset_change(self, **kwargs):
self.state.dataset_ids = [] # sampled images
self.context.dataset = get_dataset(self.state.current_dataset)
self.state.num_images_max = len(self.context.dataset.imgs)
self.state.num_images = min(self.state.num_images_max, self.state.num_images)
self.state.dirty("num_images") # Trigger resample_images()
self.state.random_sampling_disabled = False
self.state.num_images_disabled = False
self.state.annotation_categories = {
category["id"]: category for category in self.context.dataset.cats.values()
}
def on_filter_apply(self, filter: FilterProtocol[Iterable[int]], **kwargs):
selected_ids = []
for dataset_id in self.state.dataset_ids:
image_annotations_categories = [
annotation["category_id"]
for annotation in self.context.dataset.anns.values()
if annotation["image_id"] == int(dataset_id)
]
include = filter.evaluate(image_annotations_categories)
if include:
selected_ids.append(dataset_id)
self._embeddings_app.on_select(selected_ids)
def resample_images(self, **kwargs):
ids = [image["id"] for image in self.context.dataset.imgs.values()]
selected_images = []
if self.state.num_images:
if self.state.random_sampling:
selected_images = random.sample(ids, min(len(ids), self.state.num_images))
else:
selected_images = ids[: self.state.num_images]
else:
selected_images = ids
self.context.dataset_ids = selected_images
self.state.dataset_ids = [str(id) for id in self.context.dataset_ids]
self.state.user_selected_ids = self.state.dataset_ids
def _build_ui(self):
extra_args = {}
if self.server.hot_reload:
ui.reload(ui)
extra_args["reload"] = self._build_ui
self.ui = ui.NrtkExplorerLayout(
server=self.server,
embeddings_app=self._embeddings_app,
filtering_app=self._filtering_app,
transforms_app=self._transforms_app,
export_app=self._export_app,
**extra_args,
)