Skip to content

Commit

Permalink
ENH: Add the overall segmentation pipeline in Python
Browse files Browse the repository at this point in the history
Handles laterality:
Atlas and case under consideration can have different laterality
(e.g. atlas is from right leg, case under consideration from left leg),
so we appropriately mirror the atlas.

Crop atlas to the bounding box of the labeled region (bone in question)
Crop case to the bounding box of the bone in question
  • Loading branch information
dzenanz committed Feb 25, 2022
1 parent 6eccaed commit e255566
Showing 1 changed file with 307 additions and 0 deletions.
307 changes: 307 additions & 0 deletions src/hasi/mouse_femur_tibia_ct_morphometry.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,307 @@
#!/usr/bin/env python3

# Copyright NumFOCUS
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Purpose: Overall segmentation pipeline

import itk
import os
from pathlib import Path
import sys
import traceback


def sorted_file_list(folder, extension):
file_list = []
for filename in os.listdir(folder):
if filename.endswith(extension):
filename = os.path.splitext(filename)[0]
filename = Path(filename).stem
file_list.append(filename)

file_list = list(set(file_list)) # remove duplicates
file_list.sort()
return file_list


def read_slicer_fiducials(filename):
file = open(filename, 'r')
lines = file.readlines()
lines.pop(0) # Markups fiducial file version = 4.11

coordinate_system = lines[0][-4:-1]
if coordinate_system == 'RAS' or coordinate_system[-1:] == '0':
ras = True
elif coordinate_system == 'LPS' or coordinate_system[-1:] == '1':
ras = False
elif coordinate_system == 'IJK' or coordinate_system[-1:] == '2':
raise RuntimeError('Fiducials file with IJK coordinates is not supported')
else:
raise RuntimeError('Unrecognized coordinate system: ' + coordinate_system)

lines.pop(0) # CoordinateSystem = 0
lines.pop(0) # columns = id,x,y,z,ow,ox,oy,oz,vis,sel,lock,label,desc,associatedNodeID

fiducials = []
for line in lines:
e = line.split(',', 4)
p = itk.Point[itk.D, 3]()
for i in range(3):
p[i] = float(e[i + 1])
if ras and i < 2:
p[i] = -p[i]
fiducials.append(p)

return fiducials


rigid_transform_type = itk.VersorRigid3DTransform[itk.D]

# create an atlas laterality changer transform
atlas_aa_laterality_inverter = itk.Rigid3DTransform.New()
invert_superior_inferior = atlas_aa_laterality_inverter.GetParameters()
# the canonical pose was chosen without regard for proper anatomical orientation
invert_superior_inferior[8] = -1 # so we mirror along SI axis
atlas_aa_laterality_inverter.SetParameters(invert_superior_inferior)


def register_landmarks(atlas_landmarks, input_landmarks):
transform_type = itk.Transform[itk.D, 3, 3]
landmark_transformer = itk.LandmarkBasedTransformInitializer[transform_type].New()
rigid_transform = rigid_transform_type.New()
landmark_transformer.SetFixedLandmarks(atlas_landmarks)
landmark_transformer.SetMovingLandmarks(input_landmarks)
landmark_transformer.SetTransform(rigid_transform)
landmark_transformer.InitializeTransform()

# force rotation to be around center of femur head
rigid_transform.SetCenter(atlas_landmarks[0])
# and make sure that the other corresponding point maps to it perfectly
rigid_transform.SetTranslation(input_landmarks[0] - atlas_landmarks[0])

return rigid_transform


# If label is non-zero, only the specified label participates
# in computation of the bounding box.
# Normally, all non-zero labels contribute to bounding box.
def label_bounding_box(segmentation, label=0):
if label != 0:
segmentation = itk.binary_threshold_image_filter(
segmentation, lower_threshold=label, upper_threshold=label)
image_mask_spatial_object = itk.ImageMaskSpatialObject[3].New(segmentation)
bounding_box = image_mask_spatial_object.ComputeMyBoundingBoxInIndexSpace()
return bounding_box


def process_case(root_dir, bone, case, bone_label, atlas):
case_base = root_dir + bone + '/' + case + '-' + atlas # prefix for case file names

pose = read_slicer_fiducials(root_dir + bone + '/Pose.fcsv')

case_landmarks = read_slicer_fiducials(root_dir + bone + '/' + case + '.fcsv')
pose_to_case = register_landmarks(case_landmarks, pose)

if case[-1] != atlas[-1]: # last letter of file name is either L or R
print(f'Changing atlas laterality from {atlas[-1]} to {case[-1]}.')
# pose_to_case.Compose(atlas_aa_laterality_inverter, True)
pose_to_case.Compose(atlas_aa_laterality_inverter)
# we don't need to change laterality of atlas landmarks
# as they all lie in a plane with K coordinate of zero

atlas_bone_label_filename = root_dir + bone + '/' + atlas + '-AA-' + bone + '-label.nrrd'
print(f'Reading {bone} variant of atlas labels from file: {atlas_bone_label_filename}')
atlas_aa_segmentation = itk.imread(atlas_bone_label_filename)

atlas_bone_image_filename = root_dir + bone + '/' + atlas + '-AA-' + bone + '.nrrd'
print(f'Reading {bone} variant of atlas image from file: {atlas_bone_image_filename}')
atlas_aa_image = itk.imread(atlas_bone_image_filename)

case_image_filename = root_dir + 'Data/' + case + '.nrrd'
print(f'Reading case image from file: {case_image_filename}')
case_image = itk.imread(case_image_filename)

auto_segmentation_filename = root_dir + 'AutoSegmentations/' + case + '-label.nrrd'
print(f'Reading case bone segmentation from file: {auto_segmentation_filename}')
case_auto_segmentation = itk.imread(auto_segmentation_filename)

print(f'Computing {bone} bounding box')
case_bounding_box = label_bounding_box(case_auto_segmentation, bone_label)
case_bone_image = itk.region_of_interest_image_filter(
case_image,
region_of_interest=case_bounding_box)
case_bone_image_filename = root_dir + 'Bones/' + case + '-' + bone + '.nrrd'
print(f'Writing case bone image to file: {case_bone_image_filename}')
itk.imwrite(case_bone_image, case_bone_image_filename)

print('Writing atlas to case transform to file for initializing Elastix registration')
affine_pose_to_case = itk.AffineTransform[itk.D, 3].New()
affine_pose_to_case.SetCenter(pose_to_case.GetCenter())
affine_pose_to_case.SetMatrix(pose_to_case.GetMatrix())
affine_pose_to_case.SetOffset(pose_to_case.GetOffset())
atlas_to_case_filename = case_base + '.tfm'
itk.transformwrite([affine_pose_to_case], atlas_to_case_filename)
out_elastix_transform = open(atlas_to_case_filename + '.txt', "w")
out_elastix_transform.writelines(['(Transform "File")\n',
'(TransformFileName "' + case + '-' + atlas + '.tfm")'])
out_elastix_transform.close()

# Construct elastix parameter map
parameter_object = itk.ParameterObject.New()
resolutions = 4
parameter_map_rigid = parameter_object.GetDefaultParameterMap('rigid', resolutions)
parameter_object.AddParameterMap(parameter_map_rigid)
parameter_map_bspline = parameter_object.GetDefaultParameterMap("bspline", resolutions, 1.0)
parameter_object.AddParameterMap(parameter_map_bspline)
parameter_object.SetParameter("DefaultPixelValue", "-1024")
parameter_object.SetParameter("Metric", "AdvancedMeanSquares")
# parameter_object.SetParameter("FixedInternalImagePixelType", "short")
# parameter_object.SetParameter("MovingInternalImagePixelType", "short")
# we still have to use float pixels

print('Starting atlas registration')
registered, elastix_transform = itk.elastix_registration_method(
case_bone_image.astype(itk.F), # fixed image is used as primary input to the filter
moving_image=atlas_aa_image.astype(itk.F),
# moving_mask=atlas_aa_segmentation,
parameter_object=parameter_object,
initial_transform_parameter_file_name=atlas_to_case_filename + '.txt',
# log_to_console=True,
output_directory=root_dir + bone + '/',
log_file_name=case + '-' + atlas + '-elx.log'
)

# serialize each parameter map to a file.
for index in range(elastix_transform.GetNumberOfParameterMaps()):
parameter_map = elastix_transform.GetParameterMap(index)
elastix_transform.WriteParameterFile(
parameter_map,
case_base + f".{index}.txt")

registered_filename = case_base + '-reg.nrrd'
print(f'Writing registered image to file {registered_filename}')
itk.imwrite(registered.astype(itk.SS), registered_filename)

print('Running transformix')
elastix_transform.SetParameter('FinalBSplineInterpolationOrder', '0')
result_image_transformix = itk.transformix_filter(
atlas_aa_segmentation.astype(itk.F), # transformix only works with float pixels
elastix_transform,
# reference image?
)
result_image = result_image_transformix.astype(itk.UC)
registered_label_file = case_base + '-label.nrrd'
print(f'Writing deformed atlas to {registered_label_file}')
itk.imwrite(result_image, registered_label_file, compression=True)


print('Computing morphometry features')
morphometry_filter = itk.BoneMorphometryFeaturesFilter[type(atlas_aa_image)].New(case_bone_image)
morphometry_filter.SetMaskImage(result_image)
morphometry_filter.Update()
print('BVTV', morphometry_filter.GetBVTV())
print('TbN', morphometry_filter.GetTbN())
print('TbTh', morphometry_filter.GetTbTh())
print('TbSp', morphometry_filter.GetTbSp())
print('BSBV', morphometry_filter.GetBSBV())

print('Generate the mesh from the segmented case')
padded_segmentation = itk.constant_pad_image_filter(
result_image,
PadUpperBound=1,
PadLowerBound=1,
Constant=0
)

mesh = itk.cuberille_image_to_mesh_filter(padded_segmentation)
mesh_filename = case_base + '.vtk'
print(f'Writing the mesh to file {mesh_filename}')
itk.meshwrite(mesh, mesh_filename)

canonical_pose_mesh = itk.transform_mesh_filter(
mesh,
transform=pose_to_case # TODO: we should use the result of Elastix registration here
)
canonical_pose_filename = case_base + '.obj'
print(f'Writing canonical pose mesh to {canonical_pose_filename}')
itk.meshwrite(canonical_pose_mesh, canonical_pose_filename)


def main_processing(root_dir, bone, atlas, bone_label):
root_dir = os.path.abspath(root_dir) + '/'
data_list = sorted_file_list(root_dir + 'Data', '.nrrd')
if atlas not in data_list:
raise RuntimeError("Missing data file for the atlas")
data_list.remove(atlas)

landmarks_list = sorted_file_list(root_dir + bone, '.fcsv')
if atlas not in landmarks_list:
raise RuntimeError("Missing landmarks file for the atlas")
landmarks_list.remove(atlas)
if 'Pose' not in landmarks_list:
raise RuntimeError("Missing Pose.fcsv file")
landmarks_list.remove('Pose')

# check if there are any discrepancies
if data_list != landmarks_list:
print('There is a discrepancy between data_list and landmarks_list')
print('data_list:', data_list)
print('landmarks_list:', landmarks_list)
print(f'List of cases to process: {data_list}')

atlas_image_filename = root_dir + bone + '/' + atlas + '-AA.nrrd'
print(f'Reading atlas image from file: {atlas_image_filename}')
atlas_aa_image = itk.imread(atlas_image_filename)
# atlas_aa_segmentation = itk.imread(root_dir + bone + '/' + atlas + '-AA.seg.nrrd',
# pixel_type=itk.VariableLengthVector[itk.UC])
atlas_labels_filename = root_dir + bone + '/' + atlas + '-AA-label.nrrd'
print(f'Reading atlas labels from file: {atlas_labels_filename}')
atlas_aa_segmentation = itk.imread(atlas_labels_filename, pixel_type=itk.UC)

print('Computing bounding box of the labels')
# reduce the image to a bounding box around the segmented bone
# the other content makes the registration more difficult
# because the knees will be bent to different degree etc
atlas_bounding_box = label_bounding_box(atlas_aa_segmentation)

atlas_aa_segmentation = itk.region_of_interest_image_filter(
atlas_aa_segmentation,
region_of_interest=atlas_bounding_box)
atlas_bone_label_filename = root_dir + bone + '/' + atlas + '-AA-' + bone + '-label.nrrd'
print(f'Writing {bone} variant of atlas labels to file: {atlas_bone_label_filename}')
itk.imwrite(atlas_aa_segmentation, atlas_bone_label_filename)

atlas_aa_image = itk.region_of_interest_image_filter(
atlas_aa_image,
region_of_interest=atlas_bounding_box)
atlas_bone_image_filename = root_dir + bone + '/' + atlas + '-AA-' + bone + '.nrrd'
print(f'Writing {bone} variant of atlas image to file: {atlas_bone_image_filename}')
itk.imwrite(atlas_aa_image.astype(itk.SS), atlas_bone_image_filename)


# now go through all the cases, doing main processing
for case in data_list:
print(u'\u2500' * 80)
print(f'Processing case {case}')

process_case(root_dir, bone, case, bone_label, atlas)

print(f'Done processing case {case}')


# main code
main_processing('../../', 'Tibia', '901-R', 2)
main_processing('../../', 'Tibia', '901-L', 2)
main_processing('../../', 'Femur', '907-L', 1)

0 comments on commit e255566

Please sign in to comment.