-
Notifications
You must be signed in to change notification settings - Fork 107
/
fast_tsne.py
338 lines (309 loc) · 12.3 KB
/
fast_tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# This is a really basic function that does not do almost any sanity checks
#
# Usage example:
# import sys; sys.path.append('../FIt-SNE/')
# from fast_tsne import fast_tsne
# import numpy as np
# X = np.random.randn(1000, 50)
# Z = fast_tsne(X)
#
# Written by Dmitry Kobak
import os
import subprocess
import struct
import numpy as np
from datetime import datetime
def fast_tsne(
X,
theta=0.5,
perplexity=30,
map_dims=2,
max_iter=750,
stop_early_exag_iter=250,
K=-1,
sigma=-1,
nbody_algo="FFT",
knn_algo="annoy",
mom_switch_iter=250,
momentum=0.5,
final_momentum=0.8,
learning_rate="auto",
early_exag_coeff=12,
no_momentum_during_exag=False,
n_trees=50,
search_k=None,
start_late_exag_iter="auto",
late_exag_coeff=-1,
nterms=3,
intervals_per_integer=1,
min_num_intervals=50,
seed=-1,
initialization="pca",
load_affinities=None,
perplexity_list=None,
df=1,
return_loss=False,
nthreads=-1,
max_step_norm=5,
):
"""Run t-SNE. This implementation supports exact t-SNE, Barnes-Hut t-SNE
and FFT-accelerated interpolation-based t-SNE (FIt-SNE). This is a Python
wrapper to a C++ executable.
Parameters
----------
X: 2D numpy array
Array of observations (n times p)
perplexity: double
Perplexity is used to determine the bandwidth of the Gaussian kernel
in the input space. Default 30.
theta: double
Set to 0 for exact t-SNE. If non-zero, then the code will use either
Barnes Hut or FIt-SNE based on `nbody_algo`. If Barnes Hut, then theta
determins the accuracy of BH approximation. Default 0.5.
map_dims: int
Number of embedding dimensions. Default 2. FIt-SNE supports only 1 or 2
dimensions.
max_iter: int
Number of gradient descent iterations. Default 750.
nbody_algo: {'Barnes-Hut', 'FFT'}
If theta is nonzero, this determines whether to use FIt-SNE (default) or
Barnes-Hut approximation.
knn_algo: {'vp-tree', 'annoy'}
Use exact nearest neighbours with VP trees (as in BH t-SNE) or
approximate nearest neighbors with Annoy. Default is 'annoy'.
early_exag_coeff: double
Coefficient for early exaggeration. Default 12.
stop_early_exag_iter: int
When to switch off early exaggeration. Default 250.
late_exag_coeff: double
Coefficient for late exaggeration. Set to -1 in order not to use late
exaggeration. Default -1.
start_late_exag_iter: int or 'auto'
When to start late exaggeration. Default 'auto'; it sets
start_late_exag_iter to -1 meaning that late exaggeration is not used,
unless late_exag_coeff>0. In that case start_late_exag_iter is set to
stop_early_exag_iter.
momentum: double
Initial value of momentum. Default 0.5.
final_momentum: double
The value of momentum to use later in the optimisation. Default 0.8.
mom_switch_iter: int
Iteration number to switch from momentum to final_momentum. Default 250.
learning_rate: double or 'auto'
Learning rate. Default 'auto'; it sets learning rate to
N/early_exag_coeff where N is the sample size, or to 200 if
N/early_exag_coeff < 200.
max_step_norm: double or 'none' (default: 5)
Maximum distance that a point is allowed to move on one iteration.
Larger steps are clipped to this value. This prevents possible
instabilities during gradient descent. Set to 'none' to switch it off.
no_mometum_during_exag: boolean
Whether to switch off momentum during the early exaggeration phase (can
be useful for experiments with large exaggeration coefficients). Default
is False.
sigma: boolean
The standard deviation of the Gaussian kernel to be used for all points
instead of choosing it adaptively via perplexity. Set to -1 to use
perplexity. Default is -1.
K: int
The number of nearest neighbours to use when using fixed sigma instead
of perplexity calibration. Set to -1 when perplexity is used. Default
is -1.
nterms: int
If using FIt-SNE, this is the number of interpolation points per
sub-interval
intervals_per_integer: double
See min_num_intervals
min_num_intervals: int
The interpolation grid is chosen on each step of the gradient descent.
If Y is the current embedding, let maxloc = ceiling(max(Y.flatten)) and
minloc = floor(min(Y.flatten)), i.e. the points are contained in a
[minloc, maxloc]^no_dims box. The number of intervals in each
dimension is either min_num_intervals or
ceiling((maxloc-minloc)/intervals_per_integer), whichever is larger.
min_num_intervals must be a positive integer and intervals_per_integer
must be positive real value. Defaults: min_num_intervals=50,
intervals_per_integer = 1.
n_trees: int
When using Annoy, the number of search trees to use. Default is 50.
search_k: int
When using Annoy, the number of nodes to inspect during search. Default
is 3*perplexity*n_trees (or K*n_trees when using fixed sigma).
seed: int
Seed for random initialisation. Use -1 to initialise random number
generator with current time. Default -1.
initialization: 'random', 'pca', or numpy array
N x no_dims array to intialize the solution. Default: 'pca'.
load_affinities: {'load', 'save', None}
If 'save', input similarities (p_ij) are saved into a file. If 'load',
they are loaded from a file and not recomputed. If None, they are not
saved and not loaded. Default is None.
perplexity_list: list
A list of perplexities to used as a perplexity combination. Input
affinities are computed with each perplexity on the list and then
averaged. Default is None.
nthreads: int
Number of threads to use. Default is -1, i.e. use all available threads.
df: double
Controls the degree of freedom of t-distribution. Must be positive. The
actual degree of freedom is 2*df-1. The standard t-SNE choice of 1
degree of freedom corresponds to df=1. Large df approximates Gaussian
kernel. df<1 corresponds to heavier tails, which can often resolve
substructure in the embedding. See Kobak et al. (2019) for details.
Default is 1.0.
return_loss: boolean
If True, the function returns the loss values computed during
optimisation together with the final embedding. If False, only the
embedding is returned. Default is False.
Returns
-------
Y: numpy array
The embedding.
loss: numpy array
Loss values computed during optimisation. Only returned if return_loss
is True.
"""
version_number = "1.2.1"
# X should be a numpy array of 64-bit doubles
X = np.array(X).astype(float)
if learning_rate == "auto":
learning_rate = np.max((200, X.shape[0] / early_exag_coeff))
if start_late_exag_iter == "auto":
if late_exag_coeff > 0:
start_late_exag_iter = stop_early_exag_iter
else:
start_late_exag_iter = -1
if isinstance(initialization, str) and initialization == "pca":
from sklearn.decomposition import PCA
solver = "arpack" if X.shape[1] > map_dims else "auto"
pca = PCA(
n_components=map_dims,
svd_solver=solver,
random_state=seed if seed != -1 else None,
)
initialization = pca.fit_transform(X)
initialization /= np.std(initialization[:, 0])
initialization *= 0.0001
if perplexity_list is not None:
perplexity = 0 # C++ requires perplexity=0 in order to use perplexity_list
if sigma > 0 and K > 0:
perplexity = -1 # C++ requires perplexity=-1 in order to use sigma
if search_k is None:
if perplexity > 0:
search_k = 3 * perplexity * n_trees
elif perplexity == 0:
search_k = 3 * np.max(perplexity_list) * n_trees
else:
search_k = K * n_trees
# Not much of a speed up, at least on some machines, so I'm removing it.
#
# if nbody_algo == 'auto':
# if X.shape[0] < 8000:
# nbody_algo = 'Barnes-Hut'
# else:
# nbody_algo = 'FFT'
if nbody_algo == "Barnes-Hut":
nbody_algo = 1
elif nbody_algo == "FFT":
nbody_algo = 2
else:
raise ValueError("nbody_algo should be 'Barnes-Hut' or 'FFT'")
if knn_algo == "vp-tree":
knn_algo = 2
elif knn_algo == "annoy":
knn_algo = 1
else:
raise ValueError("knn_algo should be 'vp-tree' or 'annoy'")
if load_affinities == "load":
load_affinities = 1
elif load_affinities == "save":
load_affinities = 2
else:
load_affinities = 0
if nthreads == -1:
nthreads = 0
if max_step_norm == "none":
max_step_norm = -1
if no_momentum_during_exag:
no_momentum_during_exag = 1
else:
no_momentum_during_exag = 0
# create unique i/o-filenames
timestamp = str(datetime.now()) + '-' + str(np.random.randint(0,1000000000))
infile = 'data_%s.dat' % timestamp
outfile = 'result_%s.dat' % timestamp
# write data file
with open(os.getcwd() + '/' + infile, 'wb') as f:
n, d = X.shape
f.write(struct.pack("=i", n))
f.write(struct.pack("=i", d))
f.write(struct.pack("=d", theta))
f.write(struct.pack("=d", perplexity))
if perplexity == 0:
f.write(struct.pack("=i", len(perplexity_list)))
for perpl in perplexity_list:
f.write(struct.pack("=d", perpl))
f.write(struct.pack("=i", map_dims))
f.write(struct.pack("=i", max_iter))
f.write(struct.pack("=i", stop_early_exag_iter))
f.write(struct.pack("=i", mom_switch_iter))
f.write(struct.pack("=d", momentum))
f.write(struct.pack("=d", final_momentum))
f.write(struct.pack("=d", learning_rate))
f.write(struct.pack("=d", max_step_norm))
f.write(struct.pack("=i", K))
f.write(struct.pack("=d", sigma))
f.write(struct.pack("=i", nbody_algo))
f.write(struct.pack("=i", knn_algo))
f.write(struct.pack("=d", early_exag_coeff))
f.write(struct.pack("=i", no_momentum_during_exag))
f.write(struct.pack("=i", n_trees))
f.write(struct.pack("=i", search_k))
f.write(struct.pack("=i", start_late_exag_iter))
f.write(struct.pack("=d", late_exag_coeff))
f.write(struct.pack("=i", nterms))
f.write(struct.pack("=d", intervals_per_integer))
f.write(struct.pack("=i", min_num_intervals))
f.write(X.tobytes())
f.write(struct.pack("=i", seed))
f.write(struct.pack("=d", df))
f.write(struct.pack("=i", load_affinities))
if not isinstance(initialization, str) or initialization != "random":
initialization = np.array(initialization).astype(float)
f.write(initialization.tobytes())
# run t-sne
subprocess.call(
[
os.path.dirname(os.path.realpath(__file__)) + "/bin/fast_tsne",
version_number,
infile,
outfile,
"{}".format(nthreads),
]
)
# read data file
with open(os.getcwd() + '/' + outfile, 'rb') as f:
(n,) = struct.unpack("=i", f.read(4))
(md,) = struct.unpack("=i", f.read(4))
sz = struct.calcsize("=d")
buf = f.read(sz * n * md)
x_tsne = [
struct.unpack_from("=d", buf, sz * offset) for offset in range(n * md)
]
x_tsne = np.array(x_tsne).reshape((n, md))
(_,) = struct.unpack("=i", f.read(4))
buf = f.read(sz * max_iter)
loss = [
struct.unpack_from("=d", buf, sz * offset) for offset in range(max_iter)
]
loss = np.array(loss).squeeze()
if loss.size == 1:
loss = loss[np.newaxis]
loss[np.arange(1, max_iter + 1) % 50 > 0] = np.nan
# remove i/o-files
os.remove(os.getcwd() + '/' + infile)
os.remove(os.getcwd() + '/' + outfile)
if return_loss:
return (x_tsne, loss)
else:
return x_tsne