|
44 | 44 | "val outputNum = 10 // number of output classes\n",
|
45 | 45 | "val batchSize = 64 // batch size for each epoch\n",
|
46 | 46 | "val rngSeed = 123 // random number seed for reproducibility\n",
|
47 |
| - "val numEpochs = 15 // number of epochs to perform\n", |
| 47 | + "val numEpochs = 5 // number of epochs to perform\n", |
48 | 48 | "val rate = 0.0015 // learning rate"
|
49 | 49 | ]
|
50 | 50 | },
|
|
124 | 124 | "cell_type": "markdown",
|
125 | 125 | "metadata": {},
|
126 | 126 | "source": [
|
127 |
| - "### Train model" |
| 127 | + "### Launching Deeplearning4j UI" |
128 | 128 | ]
|
129 | 129 | },
|
130 | 130 | {
|
|
133 | 133 | "metadata": {},
|
134 | 134 | "outputs": [],
|
135 | 135 | "source": [
|
| 136 | + "import org.deeplearning4j.ui.api.UIServer\n", |
136 | 137 | "import org.deeplearning4j.optimize.listeners.ScoreIterationListener\n",
|
| 138 | + "import org.deeplearning4j.api.storage.StatsStorageRouter\n", |
| 139 | + "import org.deeplearning4j.api.storage.impl.RemoteUIStatsStorageRouter\n", |
| 140 | + "import org.deeplearning4j.ui.stats.StatsListener\n", |
137 | 141 | "\n",
|
138 |
| - "model.setListeners(ScoreIterationListener(100))\n", |
| 142 | + "val uiServer: UIServer = UIServer.getInstance()\n", |
| 143 | + "uiServer.enableRemoteListener()\n", |
| 144 | + "//Create the remote stats storage router - this sends the results to the UI via HTTP, assuming the UI is at http://localhost:9000\n", |
| 145 | + "val remoteUIRouter: StatsStorageRouter = RemoteUIStatsStorageRouter(\"http://localhost:9000\")\n", |
| 146 | + "model.setListeners(ScoreIterationListener(100), StatsListener(remoteUIRouter))" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "metadata": {}, |
| 152 | + "source": [ |
| 153 | + "open a new tab in your browser and go to [http://localhost:9000](http://localhost:9000)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "metadata": {}, |
| 159 | + "source": [ |
| 160 | + "### Train model" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "code", |
| 165 | + "execution_count": 6, |
| 166 | + "metadata": {}, |
| 167 | + "outputs": [], |
| 168 | + "source": [ |
139 | 169 | "model.fit(mnistTrain, numEpochs)"
|
140 | 170 | ]
|
141 | 171 | },
|
|
148 | 178 | },
|
149 | 179 | {
|
150 | 180 | "cell_type": "code",
|
151 |
| - "execution_count": 6, |
| 181 | + "execution_count": 7, |
152 | 182 | "metadata": {},
|
153 | 183 | "outputs": [
|
154 | 184 | {
|
|
159 | 189 | "\n",
|
160 | 190 | "========================Evaluation Metrics========================\n",
|
161 | 191 | " # of classes: 10\n",
|
162 |
| - " Accuracy: 0,9820\n", |
163 |
| - " Precision: 0,9819\n", |
164 |
| - " Recall: 0,9818\n", |
165 |
| - " F1 Score: 0,9819\n", |
| 192 | + " Accuracy: 0,9718\n", |
| 193 | + " Precision: 0,9722\n", |
| 194 | + " Recall: 0,9711\n", |
| 195 | + " F1 Score: 0,9714\n", |
166 | 196 | "Precision, recall & F1: macro-averaged (equally weighted avg. of 10 classes)\n",
|
167 | 197 | "\n",
|
168 | 198 | "\n",
|
169 | 199 | "=========================Confusion Matrix=========================\n",
|
170 | 200 | " 0 1 2 3 4 5 6 7 8 9\n",
|
171 | 201 | "---------------------------------------------------\n",
|
172 |
| - " 969 0 0 0 1 1 3 1 3 2 | 0 = 0\n", |
173 |
| - " 0 1128 1 1 0 1 2 1 1 0 | 1 = 1\n", |
174 |
| - " 2 1 1014 2 3 0 1 3 6 0 | 2 = 2\n", |
175 |
| - " 1 0 4 992 0 2 0 2 3 6 | 3 = 3\n", |
176 |
| - " 1 0 2 0 964 0 3 3 0 9 | 4 = 4\n", |
177 |
| - " 2 0 0 7 1 872 4 1 3 2 | 5 = 5\n", |
178 |
| - " 4 2 1 1 2 5 942 0 1 0 | 6 = 6\n", |
179 |
| - " 0 6 7 2 0 0 0 1005 4 4 | 7 = 7\n", |
180 |
| - " 4 0 1 5 2 3 3 2 952 2 | 8 = 8\n", |
181 |
| - " 2 2 1 5 9 1 1 3 3 982 | 9 = 9\n", |
| 202 | + " 967 0 0 1 1 0 4 2 2 3 | 0 = 0\n", |
| 203 | + " 0 1123 2 1 0 0 5 1 3 0 | 1 = 1\n", |
| 204 | + " 4 3 995 0 2 0 4 14 10 0 | 2 = 2\n", |
| 205 | + " 0 1 2 988 0 1 0 10 6 2 | 3 = 3\n", |
| 206 | + " 3 0 0 0 956 0 6 4 0 13 | 4 = 4\n", |
| 207 | + " 7 1 0 19 2 825 20 1 11 6 | 5 = 5\n", |
| 208 | + " 6 3 0 0 4 1 943 1 0 0 | 6 = 6\n", |
| 209 | + " 0 8 5 2 0 0 0 1010 1 2 | 7 = 7\n", |
| 210 | + " 5 0 2 6 4 1 8 7 937 4 | 8 = 8\n", |
| 211 | + " 3 6 1 6 10 0 2 6 1 974 | 9 = 9\n", |
182 | 212 | "\n",
|
183 | 213 | "Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times\n",
|
184 | 214 | "==================================================================\n"
|
|
189 | 219 | "val eval: org.nd4j.evaluation.classification.Evaluation = model.evaluate(mnistTest)\n",
|
190 | 220 | "println(eval.stats())"
|
191 | 221 | ]
|
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "markdown", |
| 225 | + "metadata": {}, |
| 226 | + "source": [ |
| 227 | + "To stop the UI:" |
| 228 | + ] |
| 229 | + }, |
| 230 | + { |
| 231 | + "cell_type": "code", |
| 232 | + "execution_count": 8, |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "uiServer.stop()" |
| 237 | + ] |
192 | 238 | }
|
193 | 239 | ],
|
194 | 240 | "metadata": {
|
|
203 | 249 | "mimetype": "text/x-kotlin",
|
204 | 250 | "name": "kotlin",
|
205 | 251 | "pygments_lexer": "kotlin",
|
206 |
| - "version": "1.3.70-eap-274" |
| 252 | + "version": "1.4.0-dev-7568" |
207 | 253 | }
|
208 | 254 | },
|
209 | 255 | "nbformat": 4,
|
|
0 commit comments