-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_all3.py
34 lines (30 loc) · 1.13 KB
/
train_all3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
Trains many lipschitz anomaly detectors in parallel
from joblib import Parallel, delayed
"""
import click
import numpy as np
import atongtf.util
from atongtf import dataset
import train
@click.command()
@click.argument('prefix', type=click.Path())
@click.argument('dataset_name', type=str)
@click.argument('model', type=str)
@click.argument('cls', type=int)
@click.argument('seed', type=int)
@click.argument('frac_corrupt', type=float)
@click.argument('batch_size', type=int)
@click.argument('num_batches', type=int)
def train_all(prefix, dataset_name, model, cls, seed, frac_corrupt, batch_size, num_batches):
atongtf.util.set_config(gpu_idx='auto', seed=seed)
path = '%s/%s/%s/%d/%d/%0.3f' % (prefix, dataset_name, model, cls, seed, frac_corrupt)
if dataset_name.startswith('mnist'):
d = dataset.Mnist_Anomaly_Dataset(cls, frac_corrupt)
elif dataset_name.startswith('cifar'):
d = dataset.Cifar_Anomaly_Dataset(cls, frac_corrupt)
elif dataset_name.startswith('vacs'):
d = dataset.VACS_Dataset(frac_corrupt)
train.train(path, d, model, batch_size, num_batches)
if __name__ == '__main__':
train_all()