forked from ryoppippi/Gasyori100knock
-
Notifications
You must be signed in to change notification settings - Fork 87
/
49_Opening_Process.py
69 lines (56 loc) · 1.55 KB
/
49_Opening_Process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
H, W, C = img.shape
# Otsu binary
# Grayscale
out = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
out = out.astype(np.uint8)
# Determine threshold of Otsu's binarization
max_sigma = 0
max_t = 0
for _t in range(1, 255):
v0 = out[np.where(out < _t)]
m0 = np.mean(v0) if len(v0) > 0 else 0.
w0 = len(v0) / (H * W)
v1 = out[np.where(out >= _t)]
m1 = np.mean(v1) if len(v1) > 0 else 0.
w1 = len(v1) / (H * W)
sigma = w0 * w1 * ((m0 - m1) ** 2)
if sigma > max_sigma:
max_sigma = sigma
max_t = _t
# Binarization
#print("threshold >>", max_t)
th = max_t
out[out < th] = 0
out[out >= th] = 255
# Morphology filter
MF = np.array(((0, 1, 0),
(1, 0, 1),
(0, 1, 0)), dtype=np.int)
# Morphology - erode
Erode_time = 1
for i in range(Erode_time):
tmp = np.pad(out, (1, 1), 'edge')
for y in range(1, H+1):
for x in range(1, W+1):
if np.sum(MF * tmp[y-1:y+2, x-1:x+2]) < 255*4:
out[y-1, x-1] = 0
# Morphology - dilate
Dil_time = 1
for i in range(Dil_time):
tmp = np.pad(out, (1, 1), 'edge')
for y in range(1, H+1):
for x in range(1, W+1):
if np.sum(MF * tmp[y-1:y+2, x-1:x+2]) >= 255:
out[y-1, x-1] = 255
# Save result
cv2.imwrite("out.jpg", out)
cv2.imshow("result", out)
# Wait until a key pressed
cv2.waitKey(0)
# Destroy all the windows opened before
cv2.destroyAllWindows()