-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmeeting2.tex
547 lines (484 loc) · 20.8 KB
/
meeting2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
% Options for packages loaded elsewhere
\PassOptionsToPackage{unicode}{hyperref}
\PassOptionsToPackage{hyphens}{url}
\PassOptionsToPackage{dvipsnames,svgnames*,x11names*}{xcolor}
%
\documentclass[
]{article}
\usepackage{amsmath,amssymb}
\usepackage{lmodern}
\usepackage{ifxetex,ifluatex}
\ifnum 0\ifxetex 1\fi\ifluatex 1\fi=0 % if pdftex
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{textcomp} % provide euro and other symbols
\else % if luatex or xetex
\usepackage{unicode-math}
\defaultfontfeatures{Scale=MatchLowercase}
\defaultfontfeatures[\rmfamily]{Ligatures=TeX,Scale=1}
\fi
% Use upquote if available, for straight quotes in verbatim environments
\IfFileExists{upquote.sty}{\usepackage{upquote}}{}
\IfFileExists{microtype.sty}{% use microtype if available
\usepackage[]{microtype}
\UseMicrotypeSet[protrusion]{basicmath} % disable protrusion for tt fonts
}{}
\makeatletter
\@ifundefined{KOMAClassName}{% if non-KOMA class
\IfFileExists{parskip.sty}{%
\usepackage{parskip}
}{% else
\setlength{\parindent}{0pt}
\setlength{\parskip}{6pt plus 2pt minus 1pt}}
}{% if KOMA class
\KOMAoptions{parskip=half}}
\makeatother
\usepackage{xcolor}
\IfFileExists{xurl.sty}{\usepackage{xurl}}{} % add URL line breaks if available
\IfFileExists{bookmark.sty}{\usepackage{bookmark}}{\usepackage{hyperref}}
\hypersetup{
pdftitle={Meeting2},
pdfauthor={Kuan Liu},
colorlinks=true,
linkcolor=Maroon,
filecolor=Maroon,
citecolor=Blue,
urlcolor=blue,
pdfcreator={LaTeX via pandoc}}
\urlstyle{same} % disable monospaced font for URLs
\usepackage[margin=1in]{geometry}
\usepackage{color}
\usepackage{fancyvrb}
\newcommand{\VerbBar}{|}
\newcommand{\VERB}{\Verb[commandchars=\\\{\}]}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
% Add ',fontsize=\small' for more characters per line
\usepackage{framed}
\definecolor{shadecolor}{RGB}{248,248,248}
\newenvironment{Shaded}{\begin{snugshade}}{\end{snugshade}}
\newcommand{\AlertTok}[1]{\textcolor[rgb]{0.94,0.16,0.16}{#1}}
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textbf{\textit{#1}}}}
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.77,0.63,0.00}{#1}}
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.00,0.00,0.81}{#1}}
\newcommand{\BuiltInTok}[1]{#1}
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.31,0.60,0.02}{#1}}
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textit{#1}}}
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textbf{\textit{#1}}}}
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.00,0.00,0.00}{#1}}
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.13,0.29,0.53}{\textbf{#1}}}
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.13,0.29,0.53}{#1}}
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.00,0.00,0.81}{#1}}
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textbf{\textit{#1}}}}
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{0.64,0.00,0.00}{\textbf{#1}}}
\newcommand{\ExtensionTok}[1]{#1}
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.00,0.00,0.81}{#1}}
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.00,0.00,0.00}{#1}}
\newcommand{\ImportTok}[1]{#1}
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textbf{\textit{#1}}}}
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.13,0.29,0.53}{\textbf{#1}}}
\newcommand{\NormalTok}[1]{#1}
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.81,0.36,0.00}{\textbf{#1}}}
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{#1}}
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textit{#1}}}
\newcommand{\RegionMarkerTok}[1]{#1}
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.00,0.00,0.00}{#1}}
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.31,0.60,0.02}{#1}}
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.31,0.60,0.02}{#1}}
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.00,0.00,0.00}{#1}}
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.31,0.60,0.02}{#1}}
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.56,0.35,0.01}{\textbf{\textit{#1}}}}
\usepackage{graphicx}
\makeatletter
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth\else\Gin@nat@width\fi}
\def\maxheight{\ifdim\Gin@nat@height>\textheight\textheight\else\Gin@nat@height\fi}
\makeatother
% Scale images if necessary, so that they will not overflow the page
% margins by default, and it is still possible to overwrite the defaults
% using explicit options in \includegraphics[width, height, ...]{}
\setkeys{Gin}{width=\maxwidth,height=\maxheight,keepaspectratio}
% Set default figure placement to htbp
\makeatletter
\def\fps@figure{htbp}
\makeatother
\setlength{\emergencystretch}{3em} % prevent overfull lines
\providecommand{\tightlist}{%
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
\setcounter{secnumdepth}{-\maxdimen} % remove section numbering
\ifluatex
\usepackage{selnolig} % disable illegal ligatures
\fi
\title{Meeting2}
\author{Kuan Liu}
\date{Aug 03 2021}
\begin{document}
\maketitle
\hypertarget{chapter-3-phase-i}{%
\section{Chapter 3 Phase I}\label{chapter-3-phase-i}}
Generally speaking the Objectives of Phase I study is safety and dosage.
This chapter focuses on Phase I methods to identify the maximum
tolerated dose (MTD). Key elements of Phase I studies including,
\begin{itemize}
\item
\begin{enumerate}
\def\labelenumi{(\arabic{enumi})}
\setcounter{enumi}{-1}
\tightlist
\item
study population (healthy volunteers or people with disease)
\end{enumerate}
\item
\begin{enumerate}
\def\labelenumi{(\alph{enumi})}
\tightlist
\item
starting dose (e.g.~\(LD_{10}\))
\end{enumerate}
\item
\begin{enumerate}
\def\labelenumi{(\alph{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
toxicity profile and dose-limiting toxicity (DLT)
\end{enumerate}
\item
\begin{enumerate}
\def\labelenumi{(\alph{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
target toxicity level (TTL)
\end{enumerate}
\item
\begin{enumerate}
\def\labelenumi{(\alph{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
dose escalation scheme (dose increment, dose assignment and cohort
size)
\end{enumerate}
\end{itemize}
\hypertarget{rule-based-design-for-determing-maximum-tolerated-dose-mtd}{%
\subsection{3.1 Rule-based design for determing maximum tolerated dose
(MTD)}\label{rule-based-design-for-determing-maximum-tolerated-dose-mtd}}
\hypertarget{design-storer-eb-1989}{%
\subsubsection{3+3 design (Storer EB,
1989)}\label{design-storer-eb-1989}}
\begin{itemize}
\tightlist
\item
widely used, implementation does not require a computer
\item
simplicity: dose escalation and de-escalation decisions are based on a
set of prespecified rules
\item
Example 3.2, page 90, 3+3 can be inefficient with low starting dose
and small to moderate increment.
\end{itemize}
\hypertarget{pharmacologically-guided-dose-escalation}{%
\subsubsection{Pharmacologically guided dose
escalation}\label{pharmacologically-guided-dose-escalation}}
\begin{itemize}
\tightlist
\item
considered more efficient then 3+3, but doesn't work for all agents
and there are challenges in getting timely pharmacokinetic results.
\end{itemize}
\hypertarget{accelerated-titration-designs-and-other-rule-based-designs}{%
\subsubsection{Accelerated titration designs and other rule-based
designs}\label{accelerated-titration-designs-and-other-rule-based-designs}}
\begin{itemize}
\tightlist
\item
variation of 3+3, allow intrapatient dose escalation - reduce number
of patients
\item
drawbacks: mask of efficacy and toxicity (delayed)
\end{itemize}
\hypertarget{other-rule-based-designs}{%
\subsubsection{Other rule-based
designs}\label{other-rule-based-designs}}
Newest one, the i3+3 design
\href{https://www.tandfonline.com/doi/abs/10.1080/10543406.2019.1636811?journalCode=lbps20}{(Liu
M, 2020)}. Set of dose \(d=1, \ldots, D\) and pre-specified i) target
toxicity rate, \(p_T\) (e.g., \(p_T=0.3\)) and the equivalence interval
(EI), mathematically as \([p_T - \epsilon_1, p_T + \epsilon_2]\) (e.g.,
{[}0.25, 0.35{]}). EI provides a range around \(p_T\) so that doses with
toxicity probabilities inside EI are considered as MTD - allows some
variabilities.
\includegraphics[width=1.1\textwidth,height=\textheight]{Figurei33.PNG}
\hypertarget{summary}{%
\subsubsection{Summary}\label{summary}}
simple but potentially inefficient.
\hypertarget{model-based-designs}{%
\subsection{3.2 Model-based designs}\label{model-based-designs}}
These designs assume a monotonic dose-response relationship with defined
dose-toxicity curve and target toxicity level. Works well under Bayesian
framework.
\includegraphics[width=0.55\textwidth,height=\textheight]{Figure3.1_sub.PNG}
\hypertarget{continual-reassessment-method-crm}{%
\subsubsection{Continual reassessment method
(CRM)}\label{continual-reassessment-method-crm}}
\begin{itemize}
\item
common model for dose-toxicity curve: hyperbolic tangent, logistic,
power. Model is updated based on accrued data (Bayesian adaptation)
\item
more likely to identify correct MTD comparing to 3+3
\item
Not well-accepted in original format due to safety considerations , if
pre-specified model were incorrect.
\item
online shiny app,
\url{https://trialdesign.org/one-page-shell.html\#BMACRM}
\end{itemize}
\hypertarget{escalation-with-overdose-control-ewoc}{%
\subsubsection{Escalation with overdose control
(EWOC)}\label{escalation-with-overdose-control-ewoc}}
\begin{itemize}
\tightlist
\item
same as CRM except the way it selects each successive new dose
\item
unlike CRM that select the new dose using the posterior mode or mean,
EWOC use the feasibility bound. A feasibility bound \(\alpha < 0.5\)
corresponds to placing a higher penalty on overdosing than on
underdosing.
\end{itemize}
\begin{Shaded}
\begin{Highlighting}[]
\FunctionTok{library}\NormalTok{(R2jags)}
\FunctionTok{library}\NormalTok{(runjags)}
\NormalTok{filename }\OtherTok{\textless{}{-}} \StringTok{"BUGSmodel.txt"}
\FunctionTok{cat}\NormalTok{(}\StringTok{"}
\StringTok{model\{}
\StringTok{ for (i in 1:N)\{}
\StringTok{\# Likelihood}
\StringTok{ Y[i]\textasciitilde{}dbern(p[i])}
\StringTok{ logit(p[i])\textless{}{-} (1/(gamma {-} Xmin))*(gamma*logit(rho0) }
\StringTok{ {-} Xmin*logit(theta)+(logit(theta){-}logit(rho0))*X[i])}
\StringTok{ \} \# end of for loop}
\StringTok{\# Priors}
\StringTok{ gamma \textasciitilde{} dunif(Xmin, Xmax)}
\StringTok{ rho0 \textasciitilde{} dunif(0,theta)}
\StringTok{ \} \# end of BUGS code}
\StringTok{"}\NormalTok{,}\AttributeTok{file=}\NormalTok{filename}
\NormalTok{)}
\CommentTok{\# Data (1st patient 140, no tox):}
\NormalTok{data1}\OtherTok{\textless{}{-}}\FunctionTok{list}\NormalTok{(}\AttributeTok{Y=}\FunctionTok{c}\NormalTok{(}\DecValTok{0}\NormalTok{), }\AttributeTok{X=}\FunctionTok{c}\NormalTok{(}\DecValTok{140}\NormalTok{), }\AttributeTok{Xmin=}\DecValTok{140}\NormalTok{, }\AttributeTok{Xmax =}\DecValTok{425}\NormalTok{, }\AttributeTok{theta=}\FloatTok{0.333}\NormalTok{, }\AttributeTok{N=}\DecValTok{1}\NormalTok{)}
\CommentTok{\# Data (1st patient 140, no tox; 2nd patient 210, no tox):}
\NormalTok{data2}\OtherTok{\textless{}{-}}\FunctionTok{list}\NormalTok{(}\AttributeTok{Y=}\FunctionTok{c}\NormalTok{(}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{), }\AttributeTok{X=}\FunctionTok{c}\NormalTok{(}\DecValTok{140}\NormalTok{,}\DecValTok{210}\NormalTok{), }\AttributeTok{Xmin=}\DecValTok{140}\NormalTok{, }\AttributeTok{Xmax=}\DecValTok{425}\NormalTok{, }\AttributeTok{theta=}\FloatTok{0.333}\NormalTok{, }\AttributeTok{N=}\DecValTok{2}\NormalTok{) }
\CommentTok{\# Data (1st patient 140, no tox; 2nd patient 210, tox):}
\NormalTok{data3}\OtherTok{\textless{}{-}}\FunctionTok{list}\NormalTok{(}\AttributeTok{Y=}\FunctionTok{c}\NormalTok{(}\DecValTok{0}\NormalTok{,}\DecValTok{1}\NormalTok{), }\AttributeTok{X=}\FunctionTok{c}\NormalTok{(}\DecValTok{140}\NormalTok{,}\DecValTok{210}\NormalTok{), }\AttributeTok{Xmin=}\DecValTok{140}\NormalTok{, }\AttributeTok{Xmax=}\DecValTok{425}\NormalTok{, }\AttributeTok{theta=}\FloatTok{0.333}\NormalTok{, }\AttributeTok{N=}\DecValTok{2}\NormalTok{) }
\CommentTok{\# Data (1st patient 140, no tox; 2nd patient 210, no tox;}
\CommentTok{\# 3rd patient 300, no response yet):}
\NormalTok{data4}\OtherTok{\textless{}{-}}\FunctionTok{list}\NormalTok{(}\AttributeTok{Y=}\FunctionTok{c}\NormalTok{(}\DecValTok{0}\NormalTok{,}\DecValTok{0}\NormalTok{,}\ConstantTok{NA}\NormalTok{),}\AttributeTok{X=}\FunctionTok{c}\NormalTok{(}\DecValTok{140}\NormalTok{,}\DecValTok{210}\NormalTok{,}\DecValTok{300}\NormalTok{),}\AttributeTok{Xmin=}\DecValTok{140}\NormalTok{,}\AttributeTok{Xmax=}\DecValTok{425}\NormalTok{,}\AttributeTok{theta=}\FloatTok{0.333}\NormalTok{,}\AttributeTok{N=}\DecValTok{3}\NormalTok{) }
\CommentTok{\#Inits:}
\NormalTok{init}\OtherTok{\textless{}{-}}\FunctionTok{list}\NormalTok{(}\FunctionTok{list}\NormalTok{(}\AttributeTok{rho0=}\FloatTok{0.05}\NormalTok{, }\AttributeTok{gamma=}\DecValTok{160}\NormalTok{),}\FunctionTok{list}\NormalTok{(}\AttributeTok{rho0=}\FloatTok{0.05}\NormalTok{, }\AttributeTok{gamma=}\DecValTok{160}\NormalTok{))}
\CommentTok{\#First patient;}
\NormalTok{jags.fit }\OtherTok{\textless{}{-}} \FunctionTok{jags}\NormalTok{(}\AttributeTok{data=}\NormalTok{data1,}\AttributeTok{inits=}\NormalTok{init,}\AttributeTok{parameters.to.save=}\FunctionTok{c}\NormalTok{(}\StringTok{"rho0"}\NormalTok{,}\StringTok{"gamma"}\NormalTok{),}
\AttributeTok{jags.seed =} \DecValTok{100}\NormalTok{, }\AttributeTok{n.iter=}\DecValTok{11000}\NormalTok{, }\AttributeTok{model.file=}\StringTok{"BUGSmodel.txt"}\NormalTok{,}\AttributeTok{n.chains =} \DecValTok{2}\NormalTok{,}\AttributeTok{n.burnin =} \DecValTok{1000}\NormalTok{)}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 1
## Unobserved stochastic nodes: 2
## Total graph size: 22
##
## Initializing model
\end{verbatim}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{jagsfit.mcmc}\OtherTok{\textless{}{-}} \FunctionTok{as.mcmc}\NormalTok{(jags.fit)}
\FunctionTok{summary}\NormalTok{(jagsfit.mcmc)}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
##
## Iterations = 1001:10991
## Thinning interval = 10
## Number of chains = 2
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## deviance 0.3474 0.22610 0.005056 0.005106
## gamma 285.3061 82.29270 1.840121 1.918351
## rho0 0.1541 0.09389 0.002099 0.002118
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## deviance 1.226e-02 0.15068 0.3226 0.5291 0.7753
## gamma 1.466e+02 214.95002 284.4832 356.7328 419.4510
## rho0 6.113e-03 0.07257 0.1489 0.2324 0.3214
\end{verbatim}
\begin{Shaded}
\begin{Highlighting}[]
\CommentTok{\#Second patient;}
\NormalTok{jags.fit }\OtherTok{\textless{}{-}} \FunctionTok{jags}\NormalTok{(}\AttributeTok{data=}\NormalTok{data2,}\AttributeTok{inits=}\NormalTok{init,}\AttributeTok{parameters.to.save=}\FunctionTok{c}\NormalTok{(}\StringTok{"rho0"}\NormalTok{,}\StringTok{"gamma"}\NormalTok{),}
\AttributeTok{jags.seed =} \DecValTok{100}\NormalTok{, }\AttributeTok{n.iter=}\DecValTok{11000}\NormalTok{, }\AttributeTok{model.file=}\StringTok{"BUGSmodel.txt"}\NormalTok{,}\AttributeTok{n.chains =} \DecValTok{2}\NormalTok{,}\AttributeTok{n.burnin =} \DecValTok{1000}\NormalTok{)}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 2
## Unobserved stochastic nodes: 2
## Total graph size: 28
##
## Initializing model
\end{verbatim}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{jagsfit.mcmc}\OtherTok{\textless{}{-}} \FunctionTok{as.mcmc}\NormalTok{(jags.fit)}
\FunctionTok{summary}\NormalTok{(jagsfit.mcmc)}
\end{Highlighting}
\end{Shaded}
\begin{verbatim}
##
## Iterations = 1001:10991
## Thinning interval = 10
## Number of chains = 2
## Sample size per chain = 1000
##
## 1. Empirical mean and standard deviation for each variable,
## plus standard error of the mean:
##
## Mean SD Naive SE Time-series SE
## deviance 0.9380 0.5703 0.012751 0.012309
## gamma 302.7255 73.6253 1.646311 1.646506
## rho0 0.1552 0.0955 0.002135 0.002136
##
## 2. Quantiles for each variable:
##
## 2.5% 25% 50% 75% 97.5%
## deviance 1.128e-01 0.51521 0.8942 1.3098 1.9733
## gamma 1.698e+02 241.47122 305.7341 364.3646 420.4591
## rho0 8.251e-03 0.07285 0.1481 0.2353 0.3222
\end{verbatim}
\hypertarget{time-to-event-monitoring-tite-crm}{%
\subsubsection{Time-to-event monitoring
(TITE-CRM)}\label{time-to-event-monitoring-tite-crm}}
\hypertarget{quick-summary-on-crm-based-approaches}{%
\subsubsection{Quick Summary on CRM based
approaches}\label{quick-summary-on-crm-based-approaches}}
Pros:
\begin{itemize}
\tightlist
\item
Solid statistical foundation
\item
Flexible and efficient
\item
Better performance than rule-based
\end{itemize}
Cons:
\begin{itemize}
\tightlist
\item
Performance can be compromised when the model is misspecified
\item
Need specialized expertise to select prior and model
\item
Work like a black box, challenging to communicate with
non-statisticians
\end{itemize}
\hypertarget{toxicity-intervals-and-ordinal-toxicity-intervals}{%
\subsubsection{Toxicity intervals and Ordinal toxicity
intervals}\label{toxicity-intervals-and-ordinal-toxicity-intervals}}
\begin{itemize}
\tightlist
\item
allow the use of a range of acceptable toxicity levels
\item
this methods is introduced to incorporate uncertainty in estimating
mean toxicities
\item
does not skip does and stops early for excessive toxicity if the
lowest does is found to be excessively toxic
\end{itemize}
\hypertarget{efficacy-versus-toxicity}{%
\subsection{3.3 Efficacy versus
toxicity}\label{efficacy-versus-toxicity}}
\begin{itemize}
\tightlist
\item
dose finding incorporating both efficacy and toxicity endpoints
\item
Use for Phase I/II design, seamless phase I and II
\item
\(EffTox\),
\href{https://biostatistics.mdanderson.org/SoftwareDownload/SingleSoftware/Index/2}{link
to software}, \href{https://www.johndcook.com/efftox.pdf}{link to
paper}
\end{itemize}
Pair of binary outcomes, \((Y_E, Y_T)\) follow with marginal probability
in logit form as
\[logit(\pi_T) = \mu_T + \beta_T x\]
\[logit(\pi_E) = \mu_E + \beta_{E,1} x + \beta_{E,2} x^2\] where x is
the dosing variable. The bivariate joint likelihood
\(P(Y_E=a, Y_T=b \mid \theta)\) captures the dependency between the two
outcomes, where \(a \in \{0,1\}\), \(b \in \{0,1\}\) and \(\theta\)
presents the vector of parameters.
At each dose update decision, the dose \(x\) is acceptable if
\[ P \{ \pi_{E} (x, \theta) \leq \pi_{\bar{E}} (x, \theta) \mid D_n \} > p_E\]
and
\[P \{ \pi_{T} (x, \theta) < \pi_{\bar{T}} (x, \theta) \mid D_n \} < p_T\]
\(p_E\) and \(p_T\) are pre-defined gatekeepers for meeting minimum
efficacy and maximum toxicity. Larger \(p_E\) more likely to exclude low
efficacy doses and larger \(p_T\) more likely to exclude excessive
toxicity doses.
The utility (desirability measure, the larger the better) of dose x with
\(\pi_E(x, \theta)\) and \(\pi_T(x, \theta)\) - which is used to assess
efficacy-toxicity trade-off is
\[ u(\pi_E, \pi_T) = 1 - \Big[ (\frac{1-\pi_E}{1-\pi_E^{*}})^p + (\frac{\pi_T}{\pi_T^{*}})^p \Big]^{\frac{1}{p}}\]
where \(\pi_E^{*}\) represents the smallest acceptable efficacy response
rate and \(\pi_T^{*}\) represents the highest acceptable toxicity level.
\includegraphics[width=0.8\textwidth,height=\textheight]{Figure3.16.PNG}
\includegraphics[width=0.7\textwidth,height=\textheight]{Table3.3.PNG}
\hypertarget{combination-therapy}{%
\subsection{3.4 Combination therapy}\label{combination-therapy}}
\begin{itemize}
\item
mathematically similar to efficacy and toxicity joint modelling, now
we joint model two or more toxicity models for each combination
therapy
\item
Gumbel model, good but might be sensible to changes of the algorithm
\item
Bivariate CRM
\item
Combination therapy with bivariate response (toxicity and efficacy)
\item
Bivariate logistic model
\end{itemize}
\hypertarget{additional-readings}{%
\subsection{Additional Readings}\label{additional-readings}}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{-1}
\tightlist
\item
Review of current Phase I methods (recommanded),
\url{https://clincancerres.aacrjournals.org/content/24/18/4357}
\item
Phase 0 (a proof of principle trial involving small number of
patients), \url{https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902019/}
\item
Seamless early-phase designs in oncology,
\url{https://academic.oup.com/jnci/article/111/2/118/5245491}
\item
Model-assisted phase I design, Bayesian optimal interval design (BOIN)
\href{https://doi.org/10.1111/rssc.12089}{(Liu and Yuan, 2015)}
\end{enumerate}
\end{document}