-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsphinx_train.cfg
282 lines (229 loc) · 10.4 KB
/
sphinx_train.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Configuration script for sphinx trainer -*-mode:Perl-*-
$CFG_VERBOSE = 1; # Determines how much goes to the screen.
# These are filled in at configuration time
$CFG_DB_NAME = "KSTT";
# Experiment name, will be used to name model files and log files
$CFG_EXPTNAME = "$CFG_DB_NAME";
# Directory containing SphinxTrain binaries
$CFG_BASE_DIR = "/home/hosseinhassani/Hossein/KCL-Research/KSTT/KSTT";
$CFG_SPHINXTRAIN_DIR = "/usr/local/lib/sphinxtrain";
$CFG_BIN_DIR = "/usr/local/libexec/sphinxtrain";
$CFG_SCRIPT_DIR = "/usr/local/lib/sphinxtrain/scripts";
# Audio waveform and feature file information
$CFG_WAVFILES_DIR = "$CFG_BASE_DIR/wav";
$CFG_WAVFILE_EXTENSION = 'wav';
$CFG_WAVFILE_TYPE = 'mswav'; # one of nist, mswav, raw
$CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat";
$CFG_FEATFILE_EXTENSION = 'mfc';
# Feature extraction parameters
$CFG_WAVFILE_SRATE = 16000.0;
$CFG_NUM_FILT = 25; # For wideband speech it's 25, for telephone 8khz reasonable value is 15
$CFG_LO_FILT = 130; # For telephone 8kHz speech value is 200
$CFG_HI_FILT = 6800; # For telephone 8kHz speech value is 3500
$CFG_TRANSFORM = "dct"; # Previously legacy transform is used, but dct is more accurate
$CFG_LIFTER = "22"; # Cepstrum lifter is smoothing to improve recognition
$CFG_VECTOR_LENGTH = 13; # 13 is usually enough
$CFG_MIN_ITERATIONS = 1; # BW Iterate at least this many times
$CFG_MAX_ITERATIONS = 10; # BW Don't iterate more than this, somethings likely wrong.
# (none/max) Type of AGC to apply to input files
$CFG_AGC = 'none';
# (current/none) Type of cepstral mean subtraction/normalization
# to apply to input files
$CFG_CMN = 'batch';
# (yes/no) Normalize variance of input files to 1.0
$CFG_VARNORM = 'no';
# (yes/no) Train full covariance matrices
$CFG_FULLVAR = 'no';
# (yes/no) Use diagonals only of full covariance matrices for
# Forward-Backward evaluation (recommended if CFG_FULLVAR is yes)
$CFG_DIAGFULL = 'no';
# (yes/no) Perform vocal tract length normalization in training. This
# will result in a "normalized" model which requires VTLN to be done
# during decoding as well.
$CFG_VTLN = 'no';
# Starting warp factor for VTLN
$CFG_VTLN_START = 0.80;
# Ending warp factor for VTLN
$CFG_VTLN_END = 1.40;
# Step size of warping factors
$CFG_VTLN_STEP = 0.05;
# Directory to write queue manager logs to
$CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager";
# Directory to write training logs to
$CFG_LOG_DIR = "$CFG_BASE_DIR/logdir";
# Directory for re-estimation counts
$CFG_BWACCUM_DIR = "$CFG_BASE_DIR/bwaccumdir";
# Directory to write model parameter files to
$CFG_MODEL_DIR = "$CFG_BASE_DIR/model_parameters";
# Directory containing transcripts and control files for
# speaker-adaptive training
$CFG_LIST_DIR = "$CFG_BASE_DIR/etc";
# Decoding variables for MMIE training
$CFG_LANGUAGEWEIGHT = "11.5";
$CFG_BEAMWIDTH = "1e-100";
$CFG_WORDBEAM = "1e-80";
$CFG_LANGUAGEMODEL = "$CFG_LIST_DIR/$CFG_DB_NAME.lm";
$CFG_WORDPENALTY = "0.2";
# Lattice pruning variables
$CFG_ABEAM = "1e-50";
$CFG_NBEAM = "1e-10";
$CFG_PRUNED_DENLAT_DIR = "$CFG_BASE_DIR/pruned_denlat";
# MMIE training related variables
$CFG_MMIE = "no";
$CFG_MMIE_MAX_ITERATIONS = 5;
$CFG_LATTICE_DIR = "$CFG_BASE_DIR/lattice";
$CFG_MMIE_TYPE = "rand"; # Valid values are "rand", "best" or "ci"
$CFG_MMIE_CONSTE = "3.0";
$CFG_NUMLAT_DIR = "$CFG_BASE_DIR/numlat";
$CFG_DENLAT_DIR = "$CFG_BASE_DIR/denlat";
# Variables used in main training of models
$CFG_DICTIONARY = "$CFG_LIST_DIR/$CFG_DB_NAME.dic";
$CFG_RAWPHONEFILE = "$CFG_LIST_DIR/$CFG_DB_NAME.phone";
$CFG_FILLERDICT = "$CFG_LIST_DIR/$CFG_DB_NAME.filler";
$CFG_LISTOFFILES = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.fileids";
$CFG_TRANSCRIPTFILE = "$CFG_LIST_DIR/${CFG_DB_NAME}_train.transcription";
$CFG_FEATPARAMS = "$CFG_LIST_DIR/feat.params";
# Variables used in characterizing models
$CFG_HMM_TYPE = '.cont.'; # Sphinx 4, PocketSphinx
#$CFG_HMM_TYPE = '.semi.'; # PocketSphinx
#$CFG_HMM_TYPE = '.ptm.'; # PocketSphinx (larger data sets)
if (($CFG_HMM_TYPE ne ".semi.")
and ($CFG_HMM_TYPE ne ".ptm.")
and ($CFG_HMM_TYPE ne ".cont.")) {
die "Please choose one CFG_HMM_TYPE out of '.cont.', '.ptm.', or '.semi.', " .
"currently $CFG_HMM_TYPE\n";
}
# This configuration is fastest and best for most acoustic models in
# PocketSphinx and Sphinx-III. See below for Sphinx-II.
$CFG_STATESPERHMM = 3;
$CFG_SKIPSTATE = 'no';
if ($CFG_HMM_TYPE eq '.semi.') {
$CFG_DIRLABEL = 'semi';
# Four stream features for PocketSphinx
$CFG_FEATURE = "s2_4x";
$CFG_NUM_STREAMS = 4;
$CFG_INITIAL_NUM_DENSITIES = 256;
$CFG_FINAL_NUM_DENSITIES = 256;
die "For semi continuous models, the initial and final models have the same density"
if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES);
} elsif ($CFG_HMM_TYPE eq '.ptm.') {
$CFG_DIRLABEL = 'ptm';
# Four stream features for PocketSphinx
$CFG_FEATURE = "s2_4x";
$CFG_NUM_STREAMS = 4;
$CFG_INITIAL_NUM_DENSITIES = 64;
$CFG_FINAL_NUM_DENSITIES = 64;
die "For phonetically tied models, the initial and final models have the same density"
if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES);
} elsif ($CFG_HMM_TYPE eq '.cont.') {
$CFG_DIRLABEL = 'cont';
# Single stream features - Sphinx 3
$CFG_FEATURE = "1s_c_d_dd";
$CFG_NUM_STREAMS = 1;
$CFG_INITIAL_NUM_DENSITIES = 1;
$CFG_FINAL_NUM_DENSITIES = 8;
die "The initial has to be less than the final number of densities"
if ($CFG_INITIAL_NUM_DENSITIES > $CFG_FINAL_NUM_DENSITIES);
}
# Number of top gaussians to score a frame. A little bit less accurate computations
# make training significantly faster. Uncomment to apply this during the training
# For good accuracy make sure you are using the same setting in decoder
# In theory this can be different for various training stages. For example 4 for
# CI stage and 16 for CD stage
# $CFG_CI_TOPN = 4;
# $CFG_CD_TOPN = 16;
# (yes/no) Train multiple-gaussian context-independent models (useful
# for alignment, use 'no' otherwise) in the models created
# specifically for forced alignment
$CFG_FALIGN_CI_MGAU = 'no';
# (yes/no) Train multiple-gaussian context-independent models (useful
# for alignment, use 'no' otherwise)
$CFG_CI_MGAU = 'no';
# (yes/no) Train context-dependent models
$CFG_CD_TRAIN = 'yes';
# Number of tied states (senones) to create in decision-tree clustering
$CFG_N_TIED_STATES = 2000;
# How many parts to run Forward-Backward estimatinon in
$CFG_NPART = 1;
# (yes/no) Train a single decision tree for all phones (actually one
# per state) (useful for grapheme-based models, use 'no' otherwise)
$CFG_CROSS_PHONE_TREES = 'no';
# Use force-aligned transcripts (if available) as input to training
$CFG_FORCEDALIGN = 'no';
# Use a specific set of models for force alignment. If not defined,
# context-independent models for the current experiment will be used.
$CFG_FORCE_ALIGN_MODELDIR = "$CFG_MODEL_DIR/$CFG_EXPTNAME.falign_ci_$CFG_DIRLABEL";
# Use a specific dictionary and filler dictionary for force alignment.
# If these are not defined, a dictionary and filler dictionary will be
# created from $CFG_DICTIONARY and $CFG_FILLERDICT, with noise words
# removed from the filler dictionary and added to the dictionary (this
# is because the force alignment is not very good at inserting them)
# $CFG_FORCE_ALIGN_DICTIONARY = "$ST::CFG_BASE_DIR/falignout$ST::CFG_EXPTNAME.falign.dict";;
# $CFG_FORCE_ALIGN_FILLERDICT = "$ST::CFG_BASE_DIR/falignout/$ST::CFG_EXPTNAME.falign.fdict";;
# Use a particular beam width for force alignment. The wider
# (i.e. smaller numerically) the beam, the fewer sentences will be
# rejected for bad alignment.
$CFG_FORCE_ALIGN_BEAM = 1e-60;
# Calculate an LDA/MLLT transform?
$CFG_LDA_MLLT = 'no';
# Dimensionality of LDA/MLLT output
$CFG_LDA_DIMENSION = 29;
# This is actually just a difference in log space (it doesn't make
# sense otherwise, because different feature parameters have very
# different likelihoods)
$CFG_CONVERGENCE_RATIO = 0.1;
# Queue::POSIX for multiple CPUs on a local machine
# Queue::PBS to use a PBS/TORQUE queue
$CFG_QUEUE_TYPE = "Queue";
# Name of queue to use for PBS/TORQUE
$CFG_QUEUE_NAME = "workq";
# (yes/no) Build questions for decision tree clustering automatically
$CFG_MAKE_QUESTS = "yes";
# If CFG_MAKE_QUESTS is yes, questions are written to this file.
# If CFG_MAKE_QUESTS is no, questions are read from this file.
$CFG_QUESTION_SET = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.tree_questions";
#$CFG_QUESTION_SET = "${CFG_BASE_DIR}/linguistic_questions";
$CFG_CP_OPERATION = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.cpmeanvar";
# Configuration for grapheme-to-phoneme model
$CFG_G2P_MODEL= 'no';
# Configuration script for sphinx decoder
# Variables starting with $DEC_CFG_ refer to decoder specific
# arguments, those starting with $CFG_ refer to trainer arguments,
# some of them also used by the decoder.
$DEC_CFG_VERBOSE = 1; # Determines how much goes to the screen.
# These are filled in at configuration time
# Name of the decoding script to use (psdecode.pl or s3decode.pl, probably)
$DEC_CFG_SCRIPT = 'psdecode.pl';
$DEC_CFG_EXPTNAME = "$CFG_EXPTNAME";
$DEC_CFG_JOBNAME = "$CFG_EXPTNAME"."_job";
# Models to use.
$DEC_CFG_MODEL_NAME = "$CFG_EXPTNAME.cd_${CFG_DIRLABEL}_${CFG_N_TIED_STATES}";
$DEC_CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat";
$DEC_CFG_FEATFILE_EXTENSION = '.mfc';
$DEC_CFG_AGC = $CFG_AGC;
$DEC_CFG_CMN = $CFG_CMN;
$DEC_CFG_VARNORM = $CFG_VARNORM;
$DEC_CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager";
$DEC_CFG_LOG_DIR = "$CFG_BASE_DIR/logdir";
$DEC_CFG_MODEL_DIR = "$CFG_MODEL_DIR";
$DEC_CFG_DICTIONARY = "$CFG_BASE_DIR/etc/$CFG_DB_NAME.dic";
$DEC_CFG_FILLERDICT = "$CFG_BASE_DIR/etc/$CFG_DB_NAME.filler";
$DEC_CFG_LISTOFFILES = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}_test.fileids";
$DEC_CFG_TRANSCRIPTFILE = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}_test.transcription";
$DEC_CFG_RESULT_DIR = "$CFG_BASE_DIR/result";
$DEC_CFG_PRESULT_DIR = "$CFG_BASE_DIR/presult";
# This variables, used by the decoder, have to be user defined, and
# may affect the decoder output
$DEC_CFG_LANGUAGEMODEL = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.lm";
# Or can be JSGF or FSG too, used if uncommented
# $DEC_CFG_GRAMMAR = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.jsgf";
# $DEC_CFG_FSG = "$CFG_BASE_DIR/etc/${CFG_DB_NAME}.fsg";
$DEC_CFG_LANGUAGEWEIGHT = "10";
$DEC_CFG_BEAMWIDTH = "1e-80";
$DEC_CFG_WORDBEAM = "1e-40";
$DEC_CFG_WORDPENALTY = "0.2";
$DEC_CFG_ALIGN = "builtin";
$DEC_CFG_NPART = 1; # Define how many pieces to split decode in
# This variable has to be defined, otherwise utils.pl will not load.
$CFG_DONE = 1;
return 1;