forked from Extreme-classification/GalaXC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict_main.py
251 lines (204 loc) · 8.76 KB
/
predict_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import torch.utils.data
import numpy as np
import math
import time
import os
import pickle
import random
import nmslib
import sys
from scipy.sparse import csr_matrix, lil_matrix, load_npz, hstack, vstack
from xclib.data import data_utils
from xclib.utils.sparse import normalize
import xclib.evaluation.xc_metrics as xc_metrics
from data import *
from utils import *
from network import HNSW
def predict(net, pred_batch):
"""
head shorty None means predict OvA on head
"""
net.eval()
torch.set_grad_enabled(False)
out_ans = net.forward(pred_batch, False)
out_ans = out_ans.detach().cpu().numpy()
if(pred_batch["label_ids"] is None):
return out_ans, None
return out_ans, pred_batch["label_ids"].detach().cpu().numpy()
def update_predicted(row_indices, predicted_batch_labels,
predicted_labels, remapping, top_k):
batch_size = row_indices.shape[0]
top_values, top_indices = predicted_batch_labels.topk(
k=top_k, dim=1, sorted=False)
ind = np.zeros((top_k * batch_size, 2), dtype=np.int64)
ind[:, 0] = np.repeat(row_indices, [top_k] * batch_size)
if(remapping is not None):
ind[:, 1] = [remapping[x]
for x in top_indices.cpu().numpy().flatten('C')]
else:
ind[:, 1] = [x for x in top_indices.cpu().numpy().flatten('C')]
vals = top_values.cpu().detach().numpy().flatten('C')
predicted_labels[ind[:, 0], ind[:, 1]] = vals
def update_predicted_shortlist(
row_indices, predicted_batch_labels, predicted_labels, shortlist, remapping, top_k=10):
if(len(predicted_batch_labels.shape) == 1):
predicted_batch_labels = predicted_batch_labels[None, :]
m = predicted_batch_labels.shape[0]
top_indices = np.argsort(predicted_batch_labels, axis=1)[
:, ::-1][:, :top_k]
top_values = predicted_batch_labels[np.arange(m)[:, None], top_indices]
batch_size, shortlist_size = shortlist.shape
ind = np.zeros((top_k * batch_size, 2), dtype=np.int)
ind[:, 0] = np.repeat(row_indices, [top_k] * batch_size)
if(remapping is not None):
ind[:, 1] = [remapping[x]
for x in np.ravel(shortlist[np.arange(m)[:, None], top_indices])]
else:
ind[:, 1] = [x for x in np.ravel(
shortlist[np.arange(m)[:, None], top_indices])]
predicted_labels[ind[:, 0], ind[:, 1]] = np.ravel(top_values)
def run_validation(val_predicted_labels, tst_X_Y_val,
tst_exact_remove, tst_X_Y_trn, inv_prop):
data = []
indptr = [0]
indices = []
for i in range(val_predicted_labels.shape[0]):
_indices1 = val_predicted_labels.indices[val_predicted_labels.indptr[i]: val_predicted_labels.indptr[i + 1]]
_vals1 = val_predicted_labels.data[val_predicted_labels.indptr[i]: val_predicted_labels.indptr[i + 1]]
_indices, _vals = [], []
for _ind, _val in zip(_indices1, _vals1):
if (_ind not in tst_exact_remove[i]) and (
_ind not in tst_X_Y_trn.indices[tst_X_Y_trn.indptr[i]: tst_X_Y_trn.indptr[i + 1]]):
_indices.append(_ind)
_vals.append(_val)
indices += list(_indices)
data += list(_vals)
indptr.append(len(indices))
_pred = csr_matrix(
(data, indices, indptr), shape=(
val_predicted_labels.shape))
print(tst_X_Y_val.shape, _pred.shape)
acc = xc_metrics.Metrics(tst_X_Y_val, inv_psp=inv_prop)
acc = acc.eval(_pred, 5)
_recall = recall(tst_X_Y_val, _pred, 100)
return (acc, _recall), _pred
def encode_nodes(net, context):
net.eval()
torch.set_grad_enabled(False)
embed3 = net.third_layer_enc(context["encoder"])
embed2 = net.second_layer_enc(context["encoder"]["node_feats"])
embed1 = net.first_layer_enc(
context["encoder"]["node_feats"]["node_feats"])
# embed = torch.stack((net.transform1(embed1.t()), net.transform2(embed2.t()), net.transform3(embed3.t())), dim=1)
embed = torch.stack((embed1.t(), embed2.t(), embed3.t()), dim=1)
embed = torch.mean(embed, dim=1)
return embed
def validate(head_net, params, partition_indices, label_remapping,
label_embs, tst_point_embs, tst_X_Y_val, tst_exact_remove, tst_X_Y_trn, use_graph_embs, topK):
_start = params["num_trn"]
_end = _start + params["num_tst"]
if(use_graph_embs):
label_nodes = [label_remapping[i] for i in range(len(label_remapping))]
val_dataset = DatasetGraphPredictionEncode(label_nodes)
hce = GraphCollator(head_net, params["num_labels"], None, train=0)
encode_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=500,
num_workers=10,
collate_fn=hce,
shuffle=False,
pin_memory=True)
label_embs_graph = np.zeros(
(len(label_nodes), params["hidden_dims"]), dtype=np.float32)
cnt = 0
for batch in encode_loader:
# print (len(label_nodes), cnt*512)
cnt += 1
encoded = encode_nodes(head_net, batch)
encoded = encoded.detach().cpu().numpy()
label_embs_graph[batch["indices"]] = encoded
val_dataset = DatasetGraphPredictionEncode(
[i for i in range(_start, _end)])
hce = GraphCollator(head_net, params["num_labels"], None, train=0)
encode_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=500,
num_workers=10,
collate_fn=hce,
shuffle=False,
pin_memory=True)
tst_point_embs_graph = np.zeros(
(params["num_tst"], params["hidden_dims"]), dtype=np.float32)
for batch in encode_loader:
encoded = encode_nodes(head_net, batch)
encoded = encoded.detach().cpu().numpy()
tst_point_embs_graph[batch["indices"]] = encoded
label_features = label_embs_graph
tst_point_features = tst_point_embs_graph
else:
label_features = label_embs
tst_point_features = tst_point_embs[:params["num_tst"]]
prediction_shortlists = []
BATCH_SIZE = 2000000
t1 = time.time()
for i in range(len(partition_indices)):
print("building ANNS for partition = ", i)
label_NGS = HNSW(
M=100,
efC=300,
efS=params["num_shortlist"],
num_threads=24)
label_NGS.fit(
label_features[partition_indices[i][0]: partition_indices[i][1]])
print("Done in ", time.time() - t1)
t1 = time.time()
tst_label_nbrs = np.zeros(
(tst_point_features.shape[0],
params["num_shortlist"]),
dtype=np.int64)
for i in range(0, tst_point_features.shape[0], BATCH_SIZE):
print(i)
_tst_label_nbrs, _ = label_NGS.predict(
tst_point_features[i: i + BATCH_SIZE], params["num_shortlist"])
tst_label_nbrs[i: i + BATCH_SIZE] = _tst_label_nbrs
prediction_shortlists.append(tst_label_nbrs)
print("Done in ", time.time() - t1)
t1 = time.time()
if(len(partition_indices) == 1):
prediction_shortlist = prediction_shortlists[0]
else:
prediction_shortlist = np.hstack(prediction_shortlists)
print(prediction_shortlist.shape)
del(prediction_shortlists)
val_dataset = DatasetGraphPrediction(_start, _end, prediction_shortlist)
hcp = GraphCollator(head_net, params["num_labels"], None, train=0)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=512,
num_workers=10,
collate_fn=hcp,
shuffle=False,
pin_memory=True)
val_data = dict(val_labels=tst_X_Y_val[:params["num_tst"], :],
val_loader=val_loader)
val_predicted_labels = lil_matrix(val_data["val_labels"].shape)
with torch.set_grad_enabled(False):
for batch_idx, batch_data in enumerate(val_data["val_loader"]):
val_preds, val_short = predict(head_net, batch_data)
partition_length = val_short.shape[1] // len(partition_indices)
for i in range(1, len(partition_indices)):
val_short[:, i *
partition_length: (i +
1) *
partition_length] += partition_indices[i][0]
update_predicted_shortlist((batch_data["inputs"]) - _start, val_preds,
val_predicted_labels, val_short, None, topK)
acc, _ = run_validation(val_predicted_labels.tocsr(
), val_data["val_labels"], tst_exact_remove, tst_X_Y_trn, params["inv_prop"])
print("acc = {}".format(acc))