-
Notifications
You must be signed in to change notification settings - Fork 109
/
benchmark_eval.py
672 lines (552 loc) · 22.7 KB
/
benchmark_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
"""
进行benchmark的评估,包括:plan、tooluse、reflextion、conclusion、profile和最终score
"""
import json, re, math, sys, logging, nltk, os, unicodedata, pandas as pd, time
import contextlib
import jsonlines
from tqdm import tqdm
from typing import Optional
from rouge import Rouge
from rouge_chinese import Rouge as RougeCh
from nltk.translate.bleu_score import sentence_bleu
from collections import defaultdict
print(sys.getrecursionlimit())
# Rouge的LCS使用,增大递归次数
sys.setrecursionlimit(4096 * 4096)
nltk.download('punkt')
def mixed_tokenize(sentence):
tokens = nltk.word_tokenize(sentence)
result = []
for token in tokens:
if any('Lo' == unicodedata.category(ch) for ch in token):
# 'Lo' is the unicode category of all non-punctuation/symbol CJK characters # result.extend(jieba.cut(token, cut_all=False))
result.extend(list(token))
else:
result.append(token)
return result
def rouge_score(label,predict):
"""
计算rouge-L
"""
label,predict = str(label), str(predict)
if label == '' or predict == '':
return 0
rouge = RougeCh()
predict = " ".join(mixed_tokenize(predict))
label = " ".join(mixed_tokenize(label))
scores = rouge.get_scores(predict, label)
return scores[0]["rouge-l"]["f"]
def autogpt_response_process(gpt_out):
if "web_search(" in gpt_out:
gpt_out = ""
if "response=\"" in gpt_out:
gpt_out = gpt_out.split("response=\"")[1].replace("\")","")
return gpt_out
def toolllama_response_process(gpt_out):
if """\"final_answer\": \"""" in gpt_out:
gpt_out = gpt_out.split("""\"final_answer\": \"""")[1].replace("\"","").replace("}","")
if gpt_out == "\n":
gpt_out = ""
return gpt_out
def find_json_dict(input_str, cnt=0):
if input_str.count("{") > input_str.count("}"):
return find_json_dict(input_str.rstrip("\n") + "\n}", cnt + 1)
if cnt >= 5:
return input_str
try:
st = input_str.index("{")
end_str = '}\n}'
end = input_str.rindex(end_str)
return input_str[st:end + len(end_str)].strip()
except json.decoder.JSONDecodeError:
return find_json_dict(input_str.rstrip("\n") + "\n}", cnt + 1)
except:
return input_str
def add_quotes_to_property_names(json_string: str) -> str:
"""
Add quotes to property names in a JSON string.
Args:
json_string (str): The JSON string.
Returns:
str: The JSON string with quotes added to property names.
"""
def replace_func(match: re.Match) -> str:
return f'"{match[1]}":'
property_name_pattern = re.compile(r"(\w+):")
corrected_json_string = property_name_pattern.sub(replace_func, json_string)
try:
json.loads(corrected_json_string)
return corrected_json_string
except json.JSONDecodeError as e:
raise e
def balance_braces(json_string: str) -> Optional[str]:
"""
Balance the braces in a JSON string.
Args:
json_string (str): The JSON string.
Returns:
str: The JSON string with braces balanced.
"""
open_braces_count = json_string.count("{")
close_braces_count = json_string.count("}")
while open_braces_count > close_braces_count:
json_string += "}"
close_braces_count += 1
while close_braces_count > open_braces_count:
json_string = json_string.rstrip("}")
close_braces_count -= 1
with contextlib.suppress(json.JSONDecodeError):
json.loads(json_string)
return json_string
def correct_json(json_to_load: str) -> str:
"""
Correct common JSON errors.
Args:
json_to_load (str): The JSON string.
"""
try:
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
error_message = str(e)
if error_message.startswith("Invalid \\escape"):
json_to_load = fix_invalid_escape(json_to_load, error_message)
if error_message.startswith(
"Expecting property name enclosed in double quotes"
):
json_to_load = add_quotes_to_property_names(json_to_load)
try:
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
error_message = str(e)
balanced_str = balance_braces(json_to_load)
if balanced_str:
return balanced_str
return json_to_load
def fix_invalid_escape(json_to_load: str, error_message: str) -> str:
"""Fix invalid escape sequences in JSON strings.
Args:
json_to_load (str): The JSON string.
error_message (str): The error message from the JSONDecodeError
exception.
Returns:
str: The JSON string with invalid escape sequences fixed.
"""
while error_message.startswith("Invalid \\escape"):
bad_escape_location = extract_char_position(error_message)
json_to_load = (
json_to_load[:bad_escape_location] + json_to_load[bad_escape_location + 1 :]
)
try:
json.loads(json_to_load)
return json_to_load
except json.JSONDecodeError as e:
# print("json loads error - fix invalid escape", e)
error_message = str(e)
return json_to_load
def extract_char_position(error_message: str) -> int:
"""Extract the character position from the JSONDecodeError message.
Args:
error_message (str): The error message from the JSONDecodeError
exception.
Returns:
int: The character position.
"""
char_pattern = re.compile(r"\(char (\d+)\)")
match = char_pattern.search(error_message)
if match:
return int(match[1])
else:
raise ValueError("Character position not found in the error message.")
def get_ReACT_plan_and_tool(response, funcs):
thought, tool_name, tool_args_kv = 'None','None',{}
thought = re.findall(r"(.+?)(?=(Final Answer|\Z|Action))", response, re.DOTALL)[0][0].strip()
def get_react_func_key(func_name, funcs):
key = 'None'
for func in funcs:
if func['name'] == func_name:
try:
key = list(func['parameters']['properties'].keys())[0]
except:
key = 'None'
return key
tool_name_re = re.findall(r"Action:(.+?)Action Input:", response, re.DOTALL)
if len(tool_name_re) > 0:
tool_name = tool_name_re[0].strip()
key = get_react_func_key(tool_name, funcs)
if key != 'None':
value = re.findall(r"Action Input:(.+?)(?=(Observation|\Z))", response, re.DOTALL)
if len(value) > 0:
tool_args_kv = {
key: value[0][0].strip()
}
# 没有keys,统一为 None
if thought == '':
thought == 'None'
if tool_name == '':
tool_name = 'None'
if tool_args_kv == '':
tool_args_kv = {}
return thought, tool_name, tool_args_kv
def get_AutoGPT_plan_and_tool(response):
thought, tool_name, tool_args_kv = 'None','None',{}
try:
response = correct_json(find_json_dict(response))
res_json = json.loads(response)
assert isinstance(res_json,dict)
except:
return thought, tool_name, tool_args_kv
if 'thoughts' in res_json:
if res_json['thoughts'] and 'text' in res_json['thoughts']:
thought = res_json['thoughts']['text']
if 'command' in res_json:
if res_json['command'] and 'name' in res_json['command']:
tool_name = res_json['command']['name']
if res_json['command'] and 'args' in res_json['command']:
try:
assert isinstance(res_json['command']['args'],dict)
tool_args_kv = res_json['command']['args']
except:
pass
if thought == '':
thought == 'None'
if tool_name == '':
tool_name = 'None'
if tool_args_kv == '':
tool_args_kv = {}
return thought, tool_name, tool_args_kv
def get_ToolLlama_plan_and_tool(response):
thought,tool_name,tool_args_kv = 'None','None',{}
try:
thought = re.findall(r"Thought:(.+?)(?=(\Z|Action))", response, re.DOTALL)
if len(thought) > 0:
thought = thought[0][0].strip()
tool_name_re = re.findall(r"Action:(.+?)(?=(Action Input:|\Z))", response, re.DOTALL)
if len(tool_name_re) > 0:
tool_name = tool_name_re[0][0].strip()
tool = re.findall(r"Action Input:(.+?)(?=(Thought|\Z))", response, re.DOTALL)
if len(tool) > 0:
tool = tool[0][0].strip()
try:
tool = correct_json(find_json_dict(tool))
tool_json = json.loads(tool)
assert isinstance(tool_json,dict)
tool_args_kv = tool_json
except:
# print('tool is not a dict')
pass
except:
pass
if thought == '':
thought == 'None'
if tool_name == '':
tool_name = 'None'
if tool_args_kv == '':
tool_args_kv = {}
return thought, tool_name, tool_args_kv
def get_KuaiAgent_plan_and_tool(response):
thought,tool_name,tool_args_kv = 'None','None',{}
try:
response = correct_json(find_json_dict(response))
res_json = json.loads(response)
assert isinstance(res_json,dict)
except:
# print('KuaiAgent JSON 格式错误')
return thought,tool_name,tool_args_kv
if 'task_name' in res_json:
thought = res_json['task_name']
if res_json and 'command' in res_json:
if 'name' in res_json['command']:
tool_name = res_json['command']['name']
if 'args' in res_json['command']:
try:
assert isinstance(res_json['command']['args'],dict)
tool_args_kv = res_json['command']['args']
except:
# print('arg is not a dict')
pass
if thought == '':
thought == 'None'
if tool_name == '':
tool_name = 'None'
if tool_args_kv == '':
tool_args_kv = {}
return thought, tool_name, tool_args_kv
def get_ModelScope_plan_and_tool(response):
thought,tool_name,tool_args_kv = 'None','None',{}
task = re.findall(r"\<\|startofthink\|\>(.+?)\<\|endofthink\|\>", response, re.DOTALL)
if len(task) > 0:
task = task[0].strip()
try:
task = correct_json(find_json_dict(task))
task = json.loads(task)
assert isinstance(task,dict)
except:
# print('KuaiAgent JSON 格式错误')
return thought,tool_name,tool_args_kv
if task and 'api_name' in task:
tool_name = task['api_name']
if task and 'parameters' in task:
try:
assert isinstance(task['parameters'],dict)
tool_args_kv = task['parameters']
except:
# print('arg is not a dict')
pass
if thought == '':
thought == 'None'
if tool_name == '':
tool_name = 'None'
if tool_args_kv == '':
tool_args_kv = {}
return thought, tool_name, tool_args_kv
def get_plan_metric(golden_thoughts, golden_toolnames, thought, tool_name):
plan_metrics = []
for golden_thought, golden_toolname in zip(golden_thoughts,golden_toolnames):
if golden_thought == 'None' or golden_toolname == 'None':
continue
thought_rouge = rouge_score(golden_thought, thought)
tool_em = 1 if tool_name == golden_toolname else 0
plan_metrics.append(thought_rouge * tool_em)
if len(plan_metrics) == 0:
plan_metrics = [0.]
return max(plan_metrics)
def get_tool_metric(golden_toolnames, golden_tool_args, tool_name, tool_args):
tool_metrics = []
for golden_toolname, golden_tool_arg in zip(golden_toolnames, golden_tool_args):
if golden_toolname == 'None':
continue
tool_em = 1 if tool_name == golden_toolname else 0
avg_arg_rouges = []
if golden_tool_arg == {} and tool_args == {}:
avg_arg_rouges = [1.]
elif tool_args != {}:
for k,v in golden_tool_arg.items():
match_k = False
for k1,v1 in tool_args.items():
if k1 == k:
avg_arg_rouges.append(rouge_score(v, v1))
match_k = True
break
if not match_k:
avg_arg_rouges.append(0.)
else:
avg_arg_rouges = [0.]
arg_rouge = sum(avg_arg_rouges) / len(avg_arg_rouges) if len(avg_arg_rouges)>0 else 0
tool_metrics.append(arg_rouge * tool_em)
if len(tool_metrics) == 0:
tool_metrics = [0.]
return max(tool_metrics)
def get_reflextion_metric(golden_thoughts, golden_toolnames, golden_tool_args, last_task_info, thought, tool_name, tool_args):
reflextion_metrics = []
for golden_thought, golden_toolname, golden_tool_arg in zip(golden_thoughts,golden_toolnames, golden_tool_args):
if golden_thought == 'None' or golden_toolname == 'None':
continue
thought_rouge = rouge_score(golden_thought, thought)
tool_em = 1 if tool_name == golden_toolname else 0
avg_arg_rouges = []
if golden_tool_arg == {} and tool_args == {}:
avg_arg_rouges = [1.]
elif tool_args != {}:
for k,v in golden_tool_arg.items():
match_k = False
for k1,v1 in tool_args.items():
if k1 == k:
avg_arg_rouges.append(rouge_score(v, v1))
match_k = True
break
if not match_k:
avg_arg_rouges.append(0.)
else:
avg_arg_rouges = [0.]
arg_rouge = sum(avg_arg_rouges) / len(avg_arg_rouges) if len(avg_arg_rouges)>0 else 0
# 惩罚因子,如果和上一轮相同则penalty_weight为1,进行惩罚
if last_task_info["tool_name"] == golden_toolname and last_task_info["tool_args"]== golden_tool_arg:
penalty_weight = 1
else:
penalty_weight = 0
reflextion_score = (1-penalty_weight) * (0.3 * tool_em * thought_rouge + 0.7 * tool_em * arg_rouge)
reflextion_metrics.append(reflextion_score)
return max(reflextion_metrics)
def plan_tooluse_reflextion_predict(model_predict, funcs):
predict_parsed_list = []
for prompt, predict in model_predict.items():
if prompt == 'ReACT' and predict != "":
thought, tool_name, tool_args_kv = get_ReACT_plan_and_tool(predict, funcs)
elif prompt == 'AutoGPT':
thought, tool_name, tool_args_kv = get_AutoGPT_plan_and_tool(predict)
elif prompt == 'ToolLlama':
thought, tool_name, tool_args_kv = get_ToolLlama_plan_and_tool(predict)
elif prompt == 'ModelScope':
thought, tool_name, tool_args_kv = get_ModelScope_plan_and_tool(predict)
elif prompt == 'KuaiAgent':
thought, tool_name, tool_args_kv = get_KuaiAgent_plan_and_tool(predict)
result = {
'thought': thought,
'tool_name': tool_name,
'tool_args': tool_args_kv,
}
predict_parsed_list.append(result)
return predict_parsed_list
def conclusion_metrics(label_dict, predict_dict):
"""
计算conclusion的分数
"""
all_rouge = []
for id, obj in tqdm(predict_dict.items()):
label_response_dict_list = label_dict[id]["golden_result_list"]
label_response_list = []
for i in label_response_dict_list:
label_response_list.append(i["golden_result"])
predict_parsed_list = obj["model_predict"]
rouge_list = []
predict_pre_template_score = []
for key,predict in predict_parsed_list.items():
# 格式单独处理
if key == "AutoGPT":
predict = autogpt_response_process(predict)
if key == "ToolLlama":
predict = toolllama_response_process(predict)
predict_pre_label_score = []
if predict == "":
predict_pre_label_score.append(0)
else:
if type(predict) == dict:
predict = json.dumps(predict,ensure_ascii=False)
for label in label_response_list:
rouge_res = rouge_score(label,predict)
predict_pre_label_score.append(rouge_res)
predict_pre_template_score.append(max(predict_pre_label_score))
all_rouge.append(sum(predict_pre_template_score)/len(predict_pre_template_score))
conclusion_avg_rouge = sum(all_rouge)/len(all_rouge)
return conclusion_avg_rouge
def profile_metrics(label_dict, predict_dict):
"""
计算profile 的平均Rouge
"""
all_rouge = []
for id, obj in tqdm(predict_dict.items()):
label_response_dict_list = label_dict[id]["golden_result_list"]
label_response_list = []
for i in label_response_dict_list:
label_response_list.append(i["golden_result"])
predict = obj["model_predict"]
rouge_list = []
if predict == "":
all_rouge.append(0)
else:
for label in label_response_list:
rouge_res = rouge_score(label,predict)
rouge_list.append(rouge_res)
all_rouge.append(max(rouge_list))
profile_avg_rouge = sum(all_rouge)/len(all_rouge)
return profile_avg_rouge
def plantooluse_metrics(label_dict, predict_dict):
all_plan_rouge = []
all_tooluse_rouge = []
for id, obj in tqdm(predict_dict.items()):
label_response_list = [i for i in label_dict[id]["golden_result_list"]]
funcs = label_dict[id]["funcs"]
predict_parsed_list = plan_tooluse_reflextion_predict(obj["model_predict"], funcs)
plan_rouge_list = []
tooluse_rouge_list = []
label_thoughts = []
label_tool_names = []
label_tool_args = []
query = obj["query"]
for label in label_response_list:
label_thoughts.append(label["thought"])
label_tool_names.append(label["tool_name"])
label_tool_args.append(label['tool_args'])
for predict in predict_parsed_list:
plan_metric = get_plan_metric(label_thoughts, label_tool_names, predict['thought'], predict['tool_name'])
tool_metric = get_tool_metric(label_tool_names, label_tool_args, predict['tool_name'], predict['tool_args'])
plan_rouge_list.append(plan_metric)
tooluse_rouge_list.append(tool_metric)
# plan_metric内部做过max,外部求mean
all_plan_rouge.append(sum(plan_rouge_list)/len(plan_rouge_list))
all_tooluse_rouge.append(sum(tooluse_rouge_list)/len(tooluse_rouge_list))
plan_avg_score = sum(all_plan_rouge) / len(all_plan_rouge)
tooluse_avg_score = sum(all_tooluse_rouge) / len(all_tooluse_rouge)
return plan_avg_score, tooluse_avg_score
def reflextion_metrics(label_dict, predict_dict):
all_reflextion_score = []
query_score = {}
for id, obj in predict_dict.items():
label_response_list = [i for i in label_dict[id]["golden_result_list"]]
predict_parsed_list = []
query = obj["query"]
funcs = label_dict[id]["funcs"]
predict_parsed_list = plan_tooluse_reflextion_predict(obj["model_predict"], funcs)
last_task_info = label_dict[id]["memory_last_task"]
reflextion_score_list = []
label_thoughts = []
label_tool_names = []
label_tool_args = []
for label in label_response_list:
label_thoughts.append(label["thought"])
label_tool_names.append(label["tool_name"])
label_tool_args.append(label['tool_args'])
for predict in predict_parsed_list:
reflextion_metric = get_reflextion_metric(label_thoughts, label_tool_names, label_tool_args, last_task_info, predict['thought'], predict['tool_name'], predict['tool_args'])
reflextion_score_list.append(reflextion_metric)
all_reflextion_score.append(sum(reflextion_score_list)/len(reflextion_score_list))
reflextion_avg_score = sum(all_reflextion_score)/len(all_reflextion_score)
return reflextion_avg_score
def eval(eval_file, predict_file):
"""
进行整体评估
"""
print(f"load eval file from {eval_file}")
print(f"load predict file from {predict_file}")
plan_tooluser_label = {}
reflextion_label = {}
conclusion_label = {}
profile_label = {}
with jsonlines.open(eval_file,"r") as f:
for line in f:
type = line["type"]
id = line["id"]
if type == "plantooluse":
plan_tooluser_label[id] = line
if type == "reflextion":
reflextion_label[id] = line
if type == "conclusion":
conclusion_label[id] = line
if type == "profile":
profile_label[id] = line
plan_tooluser_predict = {}
reflextion_predict = {}
conclusion_predict = {}
profile_predict = {}
with jsonlines.open(predict_file,"r") as f:
for line in f:
type = line["type"]
id = line["id"]
if type == "plantooluse":
plan_tooluser_predict[id] = line
if type == "reflextion":
reflextion_predict[id] = line
if type == "conclusion":
conclusion_predict[id] = line
if type == "profile":
profile_predict[id] = line
assert len(plan_tooluser_label) == len(plan_tooluser_predict)
assert len(reflextion_label) == len(reflextion_predict)
assert len(conclusion_label) == len(conclusion_predict)
assert len(profile_label) == len(profile_predict)
plan_score, tooluse_score = plantooluse_metrics(plan_tooluser_label, plan_tooluser_predict)
reflextion_score = reflextion_metrics(reflextion_label, reflextion_predict)
conclusion_score = conclusion_metrics(conclusion_label, conclusion_predict)
profile_score = profile_metrics(profile_label, profile_predict)
overall_score = (
0.25 * plan_score + # Weight for 'plantooluse' score
0.35 * tooluse_score + # Weight for 'tooluse' score
0.1 * reflextion_score + # Weight for 'reflection' score
0.2 * conclusion_score + # Weight for 'conclusion' score
0.1 * profile_score # Weight for 'profile' score
)
print(f"plan : {plan_score*100:.2f}, tooluse : {tooluse_score*100:.2f}, reflextion : {reflextion_score*100:.2f}, conclusion : {conclusion_score*100:.2f}, profile : {profile_score*100:.2f}, overall : {overall_score*100:.2f}")
if __name__ == "__main__":
eval(sys.argv[1], sys.argv[2])