-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdc_metric.py
102 lines (79 loc) · 3.08 KB
/
dc_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""
Metric implementation
"""
import torch
from torchmetrics import Metric
class DC_Metric(Metric):
def __init__(self,eval_range=None):
super(DC_Metric, self).__init__()
self.t_valid = 0.0001
self.metric_name = [
'RMSE', 'MAE', 'iRMSE', 'iMAE', 'REL', 'delta_1', 'delta_2', 'delta_3'
]
for metric_name in self.metric_name:
self.add_state(metric_name, default=torch.tensor(0.0), dist_reduce_fx="sum")
self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
self.eval_range = eval_range
def update(self, gt, pred):
with torch.no_grad():
pred = pred.detach()
gt = gt.detach()
pred_inv = 1.0 / (pred + 1e-8)
gt_inv = 1.0 / (gt + 1e-8)
# For numerical stability
if self.eval_range is not None:
mask = ((gt > self.eval_range[0]) & (gt < self.eval_range[1]))
else:
mask = (gt > self.t_valid)
num_valid = mask.sum()
pred = pred[mask]
gt = gt[mask]
pred_inv = pred_inv[mask]
gt_inv = gt_inv[mask]
pred_inv[pred <= self.t_valid] = 0.0
gt_inv[gt <= self.t_valid] = 0.0
# RMSE / MAE
diff = pred - gt
diff_abs = torch.abs(diff)
diff_sqr = torch.pow(diff, 2)
rmse = diff_sqr.sum() / (num_valid + 1e-8)
rmse = torch.sqrt(rmse)
mae = diff_abs.sum() / (num_valid + 1e-8)
# iRMSE / iMAE
diff_inv = pred_inv - gt_inv
diff_inv_abs = torch.abs(diff_inv)
diff_inv_sqr = torch.pow(diff_inv, 2)
irmse = diff_inv_sqr.sum() / (num_valid + 1e-8)
irmse = torch.sqrt(irmse)
imae = diff_inv_abs.sum() / (num_valid + 1e-8)
# Rel
rel = diff_abs / (gt + 1e-8)
rel = rel.sum() / (num_valid + 1e-8)
# delta
r1 = gt / (pred + 1e-8)
r2 = pred / (gt + 1e-8)
ratio = torch.max(r1, r2)
del_1 = (ratio < 1.25).type_as(ratio)
del_2 = (ratio < 1.25 ** 2).type_as(ratio)
del_3 = (ratio < 1.25 ** 3).type_as(ratio)
del_1 = del_1.sum() / (num_valid + 1e-8)
del_2 = del_2.sum() / (num_valid + 1e-8)
del_3 = del_3.sum() / (num_valid + 1e-8)
self.RMSE += rmse
self.MAE += mae
self.iRMSE += irmse
self.iMAE += imae
self.REL += rel
self.delta_1 += del_1
self.delta_2 += del_2
self.delta_3 += del_3
self.total += 1
def compute(self):
return self.RMSE.float() / self.total, \
self.MAE.float() / self.total, \
self.iRMSE.float() / self.total, \
self.iMAE.float() / self.total, \
self.REL.float() / self.total, \
self.delta_1.float() / self.total, \
self.delta_2.float() / self.total, \
self.delta_3.float() / self.total