-
Notifications
You must be signed in to change notification settings - Fork 113
/
Copy pathprepro.py
82 lines (63 loc) · 2.46 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
# #/usr/bin/python2
'''
By kyubyong park. kbpark.linguist@gmail.com.
https://www.github.com/kyubyong/deepvoice3
'''
import numpy as np
import librosa
from hyperparams import Hyperparams as hp
import glob
import os
import tqdm
def get_spectrograms(sound_file):
'''Returns normalized log(melspectrogram) and log(magnitude) from `sound_file`.
Args:
sound_file: A string. The full path of a sound file.
Returns:
mel: A 2d array of shape (T, n_mels) <- Transposed
mag: A 2d array of shape (T, 1+n_fft/2) <- Transposed
'''
# Loading sound file
y, sr = librosa.load(sound_file, sr=hp.sr)
# Trimming
y, _ = librosa.effects.trim(y)
# Preemphasis
y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
# stft
linear = librosa.stft(y=y,
n_fft=hp.n_fft,
hop_length=hp.hop_length,
win_length=hp.win_length)
# magnitude spectrogram
mag = np.abs(linear) # (1+n_fft//2, T)
# mel spectrogram
mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2)
mel = np.dot(mel_basis, mag) # (n_mels, t)
# Sequence length
done = np.ones_like(mel[0, :]).astype(np.int32)
# to decibel
mel = librosa.amplitude_to_db(mel)
mag = librosa.amplitude_to_db(mag)
# normalize
mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 0, 1)
mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 0, 1)
# Transpose
mel = mel.T.astype(np.float32) # (T, n_mels)
mag = mag.T.astype(np.float32) # (T, 1+n_fft//2)
return mel, done, mag
if __name__ == "__main__":
wav_folder = os.path.join(hp.data, 'wavs')
# wav_folder = os.path.join('/data/private/voice/nick', 'Tom')
mel_folder = os.path.join(hp.data, 'mels')
dones_folder = os.path.join(hp.data, 'dones')
mag_folder = os.path.join(hp.data, 'mags')
for folder in (mel_folder, dones_folder, mag_folder):
if not os.path.exists(folder): os.mkdir(folder)
files = glob.glob(os.path.join(wav_folder, "*"))
for f in tqdm.tqdm(files):
fname = os.path.basename(f)
mel, dones, mag = get_spectrograms(f) # (n_mels, T), (1+n_fft/2, T) float32
np.save(os.path.join(mel_folder, fname.replace(".wav", ".npy")), mel)
np.save(os.path.join(dones_folder, fname.replace(".wav", ".npy")), dones)
np.save(os.path.join(mag_folder, fname.replace(".wav", ".npy")), mag)