Skip to content
This repository has been archived by the owner on Sep 10, 2024. It is now read-only.

Latest commit

 

History

History
404 lines (282 loc) · 17.9 KB

Pytorch_Data_Load.md

File metadata and controls

404 lines (282 loc) · 17.9 KB

LADI In PyTorch Framework

Note: This tutorial/documentation is adapted from PyTorch Data Loading Tutorial to fit in LADI Dataset.

Introduction

PyTorch is a Python-based scientific computing package targeted at two sets of audiences:

  • A replacement for NumPy to use the power of GPUs
  • a deep learning research platform that provides maximum flexibility and speed

In this documentation, users will try to utilize PyTorch to show, preprocess and manipulate images in LADI as well as train a simple deep learning model based on a small set of data in LADI.

Prerequisite

To get started, users are required to check the following packages are installed successfully:

  • scikit-image: The scikit-image SciKit (toolkit for SciPy) extends scipy.ndimage to provide a versatile set of image processing routines. To install scikit-image:

    • Install via shell/command prompt

      pip install scikit-image
    • Install in Anaconda or Miniconda environment

      conda install -c conda-forge scikit-image
    • To check if scikit-image is installed successfully

      In Python:

      import skimage
      skimage.__version__

      If there is no SyntaxError: invalid syntax error message, then scikit-image is installed successfully.

  • pandas: pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,built on top of the Python programming language. To install pandas:

    • Install via shell/command prompt

      pip install pandas
    • Install in Anaconda or Miniconda environment

      conda install pandas
    • To check if pandas is installed successfully

      In Python:

      import pandas
      pandas.__version__

      If there is no SyntaxError: invalid syntax error message, then scikit-image is installed successfully.

Note: If you are a Mac user and trying to install the packages via shell/command prompt, please replace pip with pip3 in the commands above to ensure Python3 compatibility .

Write Custom Dataset From LADI

torch.utils.data.Dataset is an abstract class representing a dataset. Your custom dataset should inherit Dataset and override the following methods:

  • __len__ so that len(dataset) returns the size of the dataset.
  • __getitem__ to support the indexing such that dataset[i] can be used to get iith sample

To get started, users will need to import the packages. Users can specify the root directory that stores the images and the path of the CSV file that includes metadata of the images in root directory.

from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from PIL import Image

# Ignore warnings
import warnings
warnings.filterwarnings("ignore")

root_dir = '~/ladi/Images/flood_tiny/'
csv_file = '~/ladi/Images/flood_tiny/flood_tiny_metadata.csv'
label_csv = '~/ladi/Images/flood_tiny/flood_tiny_label.csv'

The /flood_tiny/ path contains 100 random images which are labeled as "damage:flood/water" and 100 other random images which are not labeled as "damage:flood/water" according to the ladi_aggregated_responses.tsv file. The flood_tiny_metadata.csv contains metadata of these 200 images. It is a subset extracted from ladi_images_metadata.csv and is stored in the same directory with these 200 images. The flood_tiny_label.csv contains labels for the 200 images.

Note: Users can also load images from url without downloading the images to local machine. However, url information (in our case, stored in metadata file) and labels (stored in label file) are necessary and should be placed in root_dir. Please look at __getitem__ function in class FloodTinyDataset(Dataset) for details.

Then, users can write a simple helper function to show images in the following steps:

def show_image(image):
    plt.imshow(image)
    # pause a bit so that plots are updated
    plt.pause(0.01)

The flood_tiny_metadata.csv contains 11 columns.

column number uuid timestamp gps_lat gps_lon gps_alt file_size width height s3_path url
1700 eaf5...a58 10/6/15 21:49 32.9070717 -80.396665 352 6100841 6000 6000 s3://ladi/Ima...7a9f90.jpg https://...

The flood_tiny_label.csv contains 2 columns.

s3_path label
s3://ladi/Images/FEMA_CAP/9073/613822/_CAP1438... True

In this case, s3_path will be the key to merge these two CSV files.

So, sample of our dataset will be a dict {'image': image, 'image_name': img_name, 'damage:flood/water': label, uuid': uuid, 'timestamp': timestamp, 'gps_lat': gps_lat, 'gps_lon': gps_lon, 'gps_alt': gps_alt, 'orig_file_size': file_size, 'orig_width': width, 'orig_height': height} containing the image, the label and the information in all 11 columns. Our dataset will take an optional argument transform so that any required processing can be applied on the sample. We will see the usefulness of transform in the next section.

class FloodTinyDataset(Dataset):

    def __init__(self, csv_file, root_dir, label_csv, transform = None):
        """
        Args:
            csv_file (string): Path to the csv file with metadata.
            root_dir (string): Directory with all the images.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """
        self.flood_tiny_metadata = pd.read_csv(csv_file)
        self.flood_tiny_label = pd.read_csv(label_csv)
        self.flood_tiny_data = pd.merge(self.flood_tiny_metadata, 
                                        self.flood_tiny_label,
                                       on="s3_path")
        self.root_dir = root_dir
        self.transform = transform

    def __len__(self):
        return len(self.flood_tiny_metadata)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()
            
        ## Option 1: Load images from local machine. The root_dir should contain all images. ##
        ## Uncomment the following two lines and comment 'img_name = self.flood_tiny_metadata.iloc[idx, 10]'
        ## if you are using Option 1. By default, we use Option 2 to load images.
        #pos = self.flood_tiny_metadata.iloc[idx, 9].rfind('/')+1
        #img_name = os.path.join(self.root_dir, self.flood_tiny_metadata.iloc[idx, 9][pos:])
        
        ## Option 2: Load images from url. There is no need to download images to local machine. ##
        ## The url information of each image is stored in metadata. 
        img_name = self.flood_tiny_metadata.iloc[idx, 10]
        
        image = Image.fromarray(io.imread(img_name))
        uuid = self.flood_tiny_data.iloc[idx, 1]
        timestamp = self.flood_tiny_data.iloc[idx, 2]
        gps_lat = self.flood_tiny_data.iloc[idx, 3]
        gps_lon = self.flood_tiny_data.iloc[idx, 4]
        gps_alt = self.flood_tiny_data.iloc[idx, 5]
        file_size = self.flood_tiny_data.iloc[idx, 6]
        width = self.flood_tiny_data.iloc[idx, 7]
        height = self.flood_tiny_data.iloc[idx, 8]
        label = self.flood_tiny_data.iloc[idx, -1]
        
        if self.transform:
            image = self.transform(image)

        sample = {'image': image, 'image_name': img_name, 'damage:flood/water': label, 'uuid': uuid, 'timestamp': timestamp, 'gps_lat': gps_lat, 'gps_lon': gps_lon, 'gps_alt': gps_alt, 'orig_file_size': file_size, 'orig_width': width, 'orig_height': height}

        return sample

Users can instantiate this custom dataset class FloodTinyDataset and iterate through the data samples.

flood_tiny_dataset = FloodTinyDataset(csv_file = csv_file, root_dir = root_dir, label_csv = label_csv)

fig = plt.figure()

for i in range(len(flood_tiny_dataset)):
    sample = flood_tiny_dataset[i]

    print(i, sample['damage:flood/water'], sample['image_name'], sample['uuid'], sample['timestamp'], sample['gps_lat'], sample['gps_lon'], sample['gps_alt'])

    plt.tight_layout()
    plt.title('Sample #{}'.format(i))
    show_image(sample['image'])

    if i == 3:
        plt.show()
        break

The first 4 samples will shown below.

img

Output:

0 True ~/ladi/Images/flood_tiny/DSC_0194_eac1a77e-3de5-46bb-a8ef-b0410314fcb1.jpg 24870156dd4154436d29f11f2b2398776ff73dff 2015-10-08 16:56:55 33.4089333333333 -79.843 690.0
1 False ~/ladi/Images/flood_tiny/A0027-93_826eff88-456d-41b1-998e-e87f4cb91e2d.jpg fe822a019ed698f9dcde06d86f310c0c58074a5d 2017-09-26 12:32:21 18.2066466666667 -65.7328233333333 316.0
2 True ~/ladi/Images/flood_tiny/DSC_1346_9aa9aa0f-857a-4b31-b8e9-1a231b51da73.jpg 1b799c118853279449c17e8a2950292f03f76a1b 2017-09-08 15:41:36 18.460231666666697 -66.693275 412.0
3 False ~/ladi/Images/flood_tiny/A0027-94_355188f9-e39b-4a73-8208-17a1c2334215.jpg 4647d8ee717821ab77a74c979dda68a06a1cc9ca 2017-09-26 12:38:47 18.2105516666667 -65.7494166666667 288.0

Image Tranforms

Sometimes, neural networks expect the images of the same size. However, in most datasets, image size is not fixed. This issue requires users to modify the original images to a different size. Some useful transform methods are shown below:

  • Resize: to resize the input PIL Image to the given size.
  • RandomCrop: to crop from image randomly. This is data augmentation.
  • RandomRotation: to rotate the image by angle.
  • RandomHorizontalFlip: to horizontally flip the given PIL Image randomly with a given probability.
  • ToTensor: to convert the numpy images to torch images (we need to swap axes).

Some Basic Transforms

torchvision.transforms.Resize(size, interpolation=2)

Parameters

  • size (sequence or python:int) – Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size)
  • interpolation (python:int*,* optional) – Desired interpolation. Default is PIL.Image.BILINEAR

torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')

Parameters

  • size (sequence or python:int) – Desired output size of the crop. If size is an int instead of sequence like (h, w), a square crop (size, size) is made.

  • padding (python:int or sequence*,* optional) – Optional padding on each border of the image. Default is None, i.e no padding.

  • pad_if_needed (boolean) – It will pad the image if smaller than the desired size to avoid raising an exception. Since cropping is done after padding, the padding seems to be done at a random offset.

  • fill – Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant

  • padding_mode

    Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

torchvision.transforms.RandomRotation(degrees, resample=False, expand=False, center=None, fill=0)

Parameters

  • degrees (sequence or python:float or python:int) – Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees).
  • resample ({PIL.Image.NEAREST**, PIL.Image.BILINEAR*,* PIL.Image.BICUBIC}**, optional) – An optional resampling filter. See filters for more information. If omitted, or if the image has mode “1” or “P”, it is set to PIL.Image.NEAREST.
  • expand (bool*,* optional) – Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation.
  • center (2-tuple*,* optional) – Optional center of rotation. Origin is the upper left corner. Default is the center of the image.
  • fill (3-tuple or python:int) – RGB pixel fill value for area outside the rotated image. If int, it is used for all channels respectively.

torchvision.transforms.RandomHorizontalFlip(p=0.5)

Parameters

p (python:float) – probability of the image being flipped. Default value is 0.5

torchvision.transforms.ToTensor

Convert a PIL Image or numpy.ndarray to tensor.

Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8

In the other cases, tensors are returned without scaling.

Compose Transforms

Now, apply the transforms on a sample.

If users want to rescale the shorter side of the image to 2048 and then randomly crop a square of size 1792 from it. i.e, we want to compose Resize and RandomCrop transforms. torchvision.transforms.Compose is a simple callable class which allows us to do this.

scale = transforms.Resize(2048)
crop = transforms.RandomCrop(1792)
rotate = transforms.RandomRotation(20)
flip = transforms.RandomHorizontalFlip(1)
composed = transforms.Compose([transforms.Resize(2048),
                               transforms.RandomCrop(1792),
                              transforms.RandomRotation(10),
                              transforms.RandomHorizontalFlip(1)])

# Apply each of the above transforms on sample.
fig = plt.figure()
sample = flood_tiny_dataset[198]
for i, tsfrm in enumerate([scale, crop, rotate, flip, composed]):
    transformed_image = tsfrm(sample['image'])

    ax = plt.subplot(2, 3, i + 1)
    plt.tight_layout()
    ax.set_title(type(tsfrm).__name__)
    show_image(transformed_image)

plt.show()

The three transforms of the sample are shown below.

img

Use Dataloader to Iterate Through Dataset

Compared to simple for loop to iterate over data, torch.utils.data.DataLoader is an iterator which provides more features:

  • Batching the data.
  • Shuffling the data.
  • Load the data in parallel using multiprocessing workers.

In the previous section, three transforms are performed on a sample. In this section, users can learn to use Dataloader to transform all images in the dataset.

First, a new dataset with transform needs to be defined.

transformed_dataset = FloodTinyDataset(csv_file=csv_file, root_dir=root_dir, 
label_csv = label_csv, transform=transforms.Compose([transforms.Resize(2048), 
transforms.RandomCrop(1792), 
transforms.RandomRotation(10), 
transforms.RandomHorizontalFlip(), 
transforms.ToTensor()]))

Then, feed the new dataset transformed_dataset into Dataloader.

dataloader = DataLoader(transformed_dataset, batch_size=4,
                        shuffle=True, num_workers=4)

To show batched images, users can write a helper function as shown below.

# Helper function to show a batch
def show_images_batch(sample_batched):
    images_batch = sample_batched['image']
    batch_size = len(images_batch)
    im_size = images_batch.size(2)
    grid_border_size = 2

    grid = utils.make_grid(images_batch)
    plt.imshow(grid.numpy().transpose((1, 2, 0)))

    for i in range(batch_size):
        plt.title('Batch from dataloader')

At last, let dataloader transform the images in batches.

for i_batch, sample_batched in enumerate(dataloader):
    print(i_batch, sample_batched['image'].size())

    # observe 4th batch and stop.
    if i_batch == 3:
        plt.figure()
        show_images_batch(sample_batched)
        plt.axis('off')
        plt.ioff()
        plt.show()
        break

The transformed images in the 4th batch:

img

The index and size of images in batch:

0 torch.Size([4, 3, 1792, 1792])
1 torch.Size([4, 3, 1792, 1792])
2 torch.Size([4, 3, 1792, 1792])
3 torch.Size([4, 3, 1792, 1792])

Distribution Statement

BSD 3-Clause License