-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain4tune.py
258 lines (215 loc) · 10.2 KB
/
train4tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import sys
import numpy as np
import torch
import utils
import torch.nn as nn
import torch.utils
import torch.backends.cudnn as cudnn
from sklearn.metrics import f1_score
from datasets import load_data, load_k_fold
from model import NetworkGNN as Network
from ogb.graphproppred import Evaluator
import logging
from sklearn.metrics import pairwise_distances
from torch_scatter import scatter_mean, scatter_sum
def main(exp_args, run=0):
global train_args
train_args = exp_args
global device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if not torch.cuda.is_available():
logging.info('no gpu device available')
sys.exit(1)
#np.random.seed(train_args.seed)
torch.cuda.set_device(train_args.gpu)
cudnn.benchmark = True
torch.manual_seed(train_args.seed)
cudnn.enabled = True
torch.cuda.manual_seed(train_args.seed)
# data = data.to(device)
if 'ogb' in train_args.data:
criterion = torch.nn.BCEWithLogitsLoss()
else:
criterion = torch.nn.CrossEntropyLoss()
criterion = criterion.cuda()
genotype = train_args.arch
hidden_size = train_args.hidden_size
data, num_nodes, num_features, num_classes = load_data(train_args.data,
batch_size=train_args.batch_size)
model = Network(genotype, criterion, num_features, num_classes, hidden_size, dropout=train_args.dropout,args=train_args)
model = model.cuda()
num_parameters = np.sum(np.prod(v.size()) for name, v in model.named_parameters())
print('params size:', num_parameters)
logging.info("genotype=%s, param size = %fMB, args=%s", genotype, utils.count_parameters_in_MB(model), train_args.__dict__)
if train_args.optimizer == 'adam':
optimizer = torch.optim.Adam(
model.parameters(),
train_args.learning_rate,
weight_decay=train_args.weight_decay
)
elif train_args.optimizer == 'sgd':
optimizer = torch.optim.SGD(
model.parameters(),
train_args.learning_rate,
momentum=train_args.momentum,
weight_decay=train_args.weight_decay
)
elif train_args.optimizer == 'adagrad':
optimizer = torch.optim.Adagrad(
model.parameters(),
train_args.learning_rate,
weight_decay=train_args.weight_decay
)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(train_args.epochs))
if train_args.ft_mode == '10fold':
valid_losses = []
valid_accs = []
test_accs = []
folds = train_args.data_fold
for fold, data in enumerate(load_k_fold(train_args.data, data[0], folds, train_args.batch_size)):
model.reset_parameters()
if train_args.cos_lr:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(train_args.epochs), eta_min=train_args.lr_min)
for epoch in range(train_args.epochs):
train_acc, train_loss = train(data, model, criterion, optimizer)
if train_args.cos_lr:
scheduler.step()
valid_acc, valid_loss = infer(data, model, criterion)
test_acc, test_loss = infer(data, model, criterion, test=True)
valid_accs.append(valid_acc)
valid_losses.append(valid_loss)
test_accs.append(test_acc)
if epoch % 10 == 0:
logging.info('fold=%s,epoch=%s, lr=%s, train_loss=%s, train_acc=%f, valid_loss=%f, valid_acc=%s, test_loss=%s, test_acc=%s', fold, epoch,
scheduler.get_lr()[0] if train_args.cos_lr else train_args.learning_rate, train_loss, train_acc, valid_loss, valid_acc, test_loss, test_acc)
print('fold={},epoch={}, lr={}, train_obj={:.08f}, train_acc={:.04f}, valid_loss={:.08f},valid_acc={:.04f},test_acc={:.04f}'.format(
fold, epoch, scheduler.get_lr()[0] if train_args.cos_lr else train_args.learning_rate,
train_loss, train_acc, valid_loss, valid_acc, test_acc))
# utils.save(model, os.path.join(train_args.save, 'weights.pt'))
# valid_losses, valid_accs, test_accs = torch.tensor(valid_losses), torch.tensor(valid_accs), torch.tensor(test_accs)
valid_losses = torch.tensor(valid_losses).view(folds, train_args.epochs)
valid_accs = torch.tensor(valid_accs).view(folds, train_args.epochs)
test_accs = torch.tensor(test_accs).view(folds, train_args.epochs)
# # min valid loss
# valid_losses, argmin = valid_losses.min(dim=-1)
# test_accs = test_accs[torch.arange(10, dtype=torch.long), argmin]
# valid_accs = valid_accs[torch.arange(10, dtype=torch.long), argmin]
#max valid acc
valid_accs, argmax = valid_accs.max(dim=-1)
test_accs = test_accs[torch.arange(folds, dtype=torch.long), argmax]
print('test_accs:', test_accs)
print('{} fold results: {:.04f}+-{:.04f}'.format(folds, test_accs.mean(), test_accs.std()))
return valid_accs.mean().item(), test_accs.mean().item(), test_accs.std().item(), train_args
else: #811 split, OGB dataet
model.reset_parameters()
min_valid_loss = float("inf")
# max_valid_acc = 0
best_valid_acc = 0
best_test_acc = 0
best_epoch = 0
valid_losses = []
valid_accs = []
test_accs = []
if train_args.cos_lr:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(train_args.epochs), eta_min=train_args.lr_min)
for epoch in range(train_args.epochs):
train_acc, train_loss = train(data, model, criterion, optimizer)
if train_args.cos_lr:
scheduler.step()
valid_acc, valid_loss = infer(data, model, criterion)
test_acc, test_loss = infer(data, model, criterion, test=True)
valid_accs.append(valid_acc)
valid_losses.append(valid_loss)
test_accs.append(test_acc)
if 'ogb' in train_args.data:
if valid_loss < min_valid_loss:
min_valid_loss = valid_loss
best_valid_acc = valid_acc
best_test_acc = test_acc
best_epoch = epoch
# if valid_acc > best_valid_acc:
# best_valid_acc = valid_acc
# best_test_acc = test_acc
# best_epoch = epoch
else:
if valid_acc > best_valid_acc:
best_valid_acc = valid_acc
best_test_acc = test_acc
best_epoch = epoch
if epoch % 10 == 0 or 'ogb' in train_args.data:
logging.info('epoch=%s, lr=%s, train_loss=%s, train_acc=%f, valid_loss=%s, valid_acc=%s, '
'test_loss=%s, test_acc=%s, best_valid_acc=%f, best_test_acc=%f', epoch,
scheduler.get_lr()[0] if train_args.cos_lr else train_args.learning_rate,
train_loss, train_acc, valid_loss, valid_acc, test_loss, test_acc, best_valid_acc, best_test_acc)
print('final: epoch:{}, valid_loss={:.08f},valid_acc={:.04f},test_acc={:.04f}'.format(
best_epoch, valid_losses[best_epoch], valid_accs[best_epoch], test_accs[best_epoch]))
return best_valid_acc, best_test_acc, 0, train_args
def train(data, model, criterion, model_optimizer):
model.train()
total_loss = 0
accuracy = 0
y_true = []
y_pred = []
# data:[dataset, train_dataset, val_dataset, test_dataset, train_loader, val_loader, test_loader]
for train_data in data[4]:
train_data = train_data.to(device)
model_optimizer.zero_grad()
output = model(train_data)
accuracy += output.max(1)[1].eq(train_data.y.view(-1)).sum().item()
if 'ogb' in train_args.data:
is_labeled = ((train_data.y == train_data.y)&(output==output))
error_loss = criterion(output.to(torch.float32)[is_labeled], train_data.y.to(torch.float32)[is_labeled])
y_true.append(train_data.y[is_labeled].view(output[is_labeled].shape).detach().cpu())
y_pred.append(output[is_labeled].detach().cpu())
else:
error_loss = criterion(output, train_data.y.view(-1))
total_loss += error_loss.item()
error_loss.backward()
model_optimizer.step()
if 'ogb' in train_args.data:
evaluator = Evaluator(train_args.data)
y_true = torch.cat(y_true, dim=0).numpy().reshape(-1, 1)
y_pred = torch.cat(y_pred, dim=0).numpy().reshape(-1, 1)
input_dict = {"y_true": y_true, "y_pred": y_pred}
try:
train_acc = evaluator.eval(input_dict)['rocauc']
return train_acc, total_loss / len(data[4].dataset)
except RuntimeError as e:
return 0, float("inf")
else:
return accuracy/len(data[4].dataset), total_loss / len(data[4].dataset)
def infer(data_, model, criterion, test=False):
model.eval()
total_loss = 0
accuracy = 0
y_true = []
y_pred = []
results = []
#for valid or test.
if test:
data = data_[6]
else:
data = data_[5]
for val_data in data:
val_data = val_data.to(device)
with torch.no_grad():
logits = model(val_data)
target = val_data.y
if 'ogb' in train_args.data:
loss = criterion(logits.to(torch.float32), target.to(torch.float32))
y_true.append(target.view(logits.shape).detach().cpu())
y_pred.append(logits.detach().cpu())
else:
loss = criterion(logits, target.view(-1))
total_loss += loss.item()
accuracy += logits.max(1)[1].eq(target.view(-1)).sum().item()
if 'ogb' in train_args.data:
evaluator = Evaluator(train_args.data)
y_true = torch.cat(y_true, dim=0).numpy()
y_pred = torch.cat(y_pred, dim=0).numpy()
input_dict = {"y_true": y_true, "y_pred": y_pred}
return evaluator.eval(input_dict)['rocauc'], total_loss / len(data.dataset)
else:
return accuracy / len(data.dataset), total_loss/len(data.dataset)
if __name__ == '__main__':
main()