-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
142 lines (127 loc) · 5.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import torch.optim as optim
def call_bn(bn, x):
return bn(x)
class MLP(nn.Module):
def __init__(self,n_outputs=10):
super(MLP, self).__init__()
self.l1=nn.Linear(784,256)
self.l2=nn.Linear(256,n_outputs)
def forward(self, x):
x=x.view(-1,28*28)
x=F.relu(self.l1(x))
x=self.l2(x)
return x
class CNN(nn.Module):
def __init__(self, n_outputs=10):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, n_outputs)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class CNN_large(nn.Module):
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, momentum=0.1):
self.dropout_rate = dropout_rate
self.momentum = momentum
super(CNN_large, self).__init__()
self.c1=nn.Conv2d(input_channel,64,kernel_size=3,stride=1, padding=1)
self.c2=nn.Conv2d(64,64,kernel_size=3,stride=1, padding=1)
self.c3=nn.Conv2d(64,128,kernel_size=3,stride=1, padding=1)
self.c4=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c5=nn.Conv2d(128,196,kernel_size=3,stride=1, padding=1)
self.c6=nn.Conv2d(196,16,kernel_size=3,stride=1, padding=1)
self.l_c1=nn.Linear(256,n_outputs)
self.bn1=nn.BatchNorm2d(64,momentum=self.momentum)
self.bn2=nn.BatchNorm2d(64,momentum=self.momentum)
self.bn3=nn.BatchNorm2d(128,momentum=self.momentum)
self.bn4=nn.BatchNorm2d(128,momentum=self.momentum)
self.bn5=nn.BatchNorm2d(196,momentum=self.momentum)
self.bn6=nn.BatchNorm2d(16,momentum=self.momentum)
def forward(self, x):
h=x
h=self.c1(h)
h=F.relu(call_bn(self.bn1, h))
h=self.c2(h)
h=F.relu(call_bn(self.bn2, h))
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=self.c3(h)
h=F.relu(call_bn(self.bn3, h))
h=self.c4(h)
h=F.relu(call_bn(self.bn4, h))
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=self.c5(h)
h=F.relu(call_bn(self.bn5, h))
h=self.c6(h)
h=F.relu(call_bn(self.bn6, h))
h=F.max_pool2d(h, kernel_size=2, stride=2)
h = h.view(h.size(0), -1)
logit=self.l_c1(h)
return logit
class CNN_co(nn.Module):
def __init__(self, input_channel=3, n_outputs=10, dropout_rate=0.25, top_bn=False):
self.dropout_rate = dropout_rate
self.top_bn = top_bn
super(CNN_co, self).__init__()
self.c1=nn.Conv2d(input_channel,128,kernel_size=3,stride=1, padding=1)
self.c2=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c3=nn.Conv2d(128,128,kernel_size=3,stride=1, padding=1)
self.c4=nn.Conv2d(128,256,kernel_size=3,stride=1, padding=1)
self.c5=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c6=nn.Conv2d(256,256,kernel_size=3,stride=1, padding=1)
self.c7=nn.Conv2d(256,512,kernel_size=3,stride=1, padding=0)
self.c8=nn.Conv2d(512,256,kernel_size=3,stride=1, padding=0)
self.c9=nn.Conv2d(256,128,kernel_size=3,stride=1, padding=0)
self.l_c1=nn.Linear(128,n_outputs)
self.bn1=nn.BatchNorm2d(128)
self.bn2=nn.BatchNorm2d(128)
self.bn3=nn.BatchNorm2d(128)
self.bn4=nn.BatchNorm2d(256)
self.bn5=nn.BatchNorm2d(256)
self.bn6=nn.BatchNorm2d(256)
self.bn7=nn.BatchNorm2d(512)
self.bn8=nn.BatchNorm2d(256)
self.bn9=nn.BatchNorm2d(128)
def forward(self, x,):
h=x
h=self.c1(h)
h=F.leaky_relu(call_bn(self.bn1, h), negative_slope=0.01)
h=self.c2(h)
h=F.leaky_relu(call_bn(self.bn2, h), negative_slope=0.01)
h=self.c3(h)
h=F.leaky_relu(call_bn(self.bn3, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c4(h)
h=F.leaky_relu(call_bn(self.bn4, h), negative_slope=0.01)
h=self.c5(h)
h=F.leaky_relu(call_bn(self.bn5, h), negative_slope=0.01)
h=self.c6(h)
h=F.leaky_relu(call_bn(self.bn6, h), negative_slope=0.01)
h=F.max_pool2d(h, kernel_size=2, stride=2)
h=F.dropout2d(h, p=self.dropout_rate)
h=self.c7(h)
h=F.leaky_relu(call_bn(self.bn7, h), negative_slope=0.01)
h=self.c8(h)
h=F.leaky_relu(call_bn(self.bn8, h), negative_slope=0.01)
h=self.c9(h)
h=F.leaky_relu(call_bn(self.bn9, h), negative_slope=0.01)
h=F.avg_pool2d(h, kernel_size=h.data.shape[2])
h = h.view(h.size(0), h.size(1))
logit=self.l_c1(h)
if self.top_bn:
logit=call_bn(self.bn_c1, logit)
return logit