-
Notifications
You must be signed in to change notification settings - Fork 9
/
record_hardware.ino
860 lines (739 loc) · 28.6 KB
/
record_hardware.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/* Teensy Logic Analyzer
* Copyright (c) 2020 LAtimes2
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// skip 4.0 for now
#if not Teensy_4_0
// Teensy 3.0/3.1/3.2
#if defined(KINETISK)
//
// Teensy 3.1 MCU has a partial implementation of SPI1 in the hardware - there is no clock signal available.
// Luckily, the logic analyzer doesn't need the clock signal, only the MISO signal, so it can use SPI1.
//
#define KINETISK_SPI1 (*(KINETISK_SPI_t *)0x4002D000)
#define SPI1_MCR (KINETISK_SPI1.MCR) // DSPI Module Configuration Register
#define SPI1_TCR (KINETISK_SPI1.TCR) // DSPI Transfer Count Register
#define SPI1_CTAR0 (KINETISK_SPI1.CTAR0) // DSPI Clock and Transfer Attributes Register, In Master Mode
#define SPI1_SR (KINETISK_SPI1.SR) // DSPI Status Register
#define SPI1_PUSHR (KINETISK_SPI1.PUSHR) // DSPI PUSH TX FIFO Register In Master Mode
#define SPI1_POPR (KINETISK_SPI1.POPR) // DSPI POP RX FIFO Register
#endif
// Forward declarations
void rearrangeBufferValues (sumpSetupVariableStruct &sv,
sumpDynamicVariableStruct &dynamic,
bool adjustChan1Left);
inline void startSPIClock (bool multipleChannels,
uint32_t cpuClockTicks);
//
// Include record_hadware.h multiple times with different defines
//
// single channel
#include "record_hardware.h"
// single channel with trigger
#define USE_TRIGGER 1
#include "record_hardware.h"
#undef USE_TRIGGER
// single channel with pre-trigger
#define USE_PRE_TRIGGER 1
#include "record_hardware.h"
#undef USE_PRE_TRIGGER
// multiple channels
#define MULTIPLE_CHANNELS 1
#include "record_hardware.h"
// multiple channels with trigger
#define USE_TRIGGER 1
#include "record_hardware.h"
#undef USE_TRIGGER
// multiple channels with pre-trigger
#define USE_PRE_TRIGGER 1
#include "record_hardware.h"
#undef USE_PRE_TRIGGER
#undef MULTIPLE_CHANNELS
void recordSPIData (sumpSetupVariableStruct &sv,
sumpDynamicVariableStruct &dynamic)
{
bool adjustChan1Left = false;
bool multipleChannels = (sv.numberOfChannels > 1);
if (multipleChannels)
{
if (sv.triggerMask[0])
{
#if Teensy_LC
// 12 MHz - can't support full triggering
if (sv.cpuClockTicks <= 4)
{
recordSPIData_MultiChannel_Pretrigger (sv, dynamic);
}
else
#endif
{
recordSPIData_MultiChannel_Trigger (sv, dynamic);
}
}
else
{
recordSPIData_MultiChannel (sv, dynamic);
}
}
else
{
if (sv.triggerMask[0])
{
#if Teensy_LC
// 24 MHz - can't support full triggering
if (sv.cpuClockTicks <= 2)
{
recordSPIData_SingleChannel_Pretrigger (sv, dynamic);
}
else
#endif
{
recordSPIData_SingleChannel_Trigger (sv, dynamic);
}
}
else
{
recordSPIData_SingleChannel (sv, dynamic);
}
}
if (multipleChannels)
{
// offset between channels is most likely to occur at higher speeds. An
// attempt is made to compensate in startSPIClock and this then
// removes that compensation
if (sv.cpuClockTicks <= 16)
{
adjustChan1Left = true;
}
// adjust data from how SPI stores it to how send_data expects it
rearrangeBufferValues (sv, dynamic, adjustChan1Left);
}
}
void rearrangeBufferValues (sumpSetupVariableStruct &sv,
sumpDynamicVariableStruct &dynamic,
bool adjustChan1Left)
{
if (sv.numberOfChannels > 1)
{
uint32_t *inputPtr = sv.startOfBuffer;
uint32_t *outputPtr = sv.startOfBuffer;
uint32_t chan0Values;
uint32_t chan1Values;
uint32_t firstMSB;
uint32_t newValues = 0;
uint32_t newValuesPart1 = 0;
uint32_t mask;
int shiftIndex;
firstMSB = *(inputPtr + 1) >> 31;
while (outputPtr < sv.endOfBuffer)
{
// fix the data to alternate each sample
chan0Values = *inputPtr;
++inputPtr;
chan1Values = *inputPtr;
++inputPtr;
newValues = 0;
mask = 0x80000000;
shiftIndex = 30;
for (int index = 31; index >= 0; --index)
{
newValues += ((chan0Values & mask) >> index) << (shiftIndex);
// if recorded at same time
if (!adjustChan1Left)
{
newValues += ((chan1Values & mask) >> index) << (shiftIndex + 1);
}
else
{
// if not first bit
if (index > 0)
{
// shift channel 1 to the left 1 bit
newValues += (((chan1Values << 1) & mask) >> index ) << (shiftIndex + 1);
}
else
{
// if not last value in buffer
if (inputPtr < sv.endOfBuffer)
{
// LSB is MSB of next value
chan1Values = *(inputPtr + 1);
newValues += ((chan1Values & 0x80000000) >> 31) << 1;
}
else // last value in buffer - use MSB of first value
{
newValues += firstMSB << 1;
}
}
}
mask = mask >> 1;
shiftIndex = shiftIndex - 2;
// if end of part 1
if (index == 16) {
// save value and restart for next 32 bits of output
newValuesPart1 = newValues;
newValues = 0;
shiftIndex = 30;
}
}
*outputPtr = newValuesPart1;
++outputPtr;
*outputPtr = newValues;
++outputPtr;
}
}
}
#if Teensy_LC
// SPI register values
// SPI master, system enable, clock phase (to get continuous clock)
const uint8_t SPI_C1 = SPI_C1_MSTR | SPI_C1_SPE | SPI_C1_CPHA;
// 16 bit mode
const uint8_t SPI_C2 = SPI_C2_SPIMODE;
// FIFO mode
const uint8_t SPI_C3 = SPI_C3_FIFOMODE;
void spi0Initialize()
{
// turn on SPI module clock
SIM_SCGC4 |= SIM_SCGC4_SPI0;
SPI0_C1 = SPI_C1;
SPI0_C2 = SPI_C2;
// MISO is only SPI signal needed.
if (CHAN1 == 12) {
CORE_PIN12_CONFIG = PORT_PCR_MUX(2); // MISO0 = 12 (PTC7)
} else {
CORE_PIN8_CONFIG = PORT_PCR_MUX(2); // MISO0 = 8 (PTD3)
}
#if SPI_DEBUG
if (1) {
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2); // MOSI0 = 11 (PTC6)
} else {
CORE_PIN7_CONFIG = PORT_PCR_MUX(2); // MOSI0 = 7 (PTD2)
}
if (0) {
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2); // SCK0 = 13 (PTC5)
} else {
CORE_PIN14_CONFIG = PORT_PCR_MUX(2); // SCK0 = 14 (PTD1)
}
#endif
}
void spi1Initialize()
{
// turn on SPI module clock
SIM_SCGC4 |= SIM_SCGC4_SPI1;
SPI1_C1 = SPI_C1;
SPI1_C2 = SPI_C2;
// MISO is only SPI signal needed.
if (CHAN0 == 1) {
CORE_PIN1_CONFIG = PORT_PCR_MUX(2); // MISO1 = 1 (PTB17)
} else {
CORE_PIN5_CONFIG = PORT_PCR_MUX(2); // MISO1 = 5 (PTD7)
}
#if SPI_DEBUG
if (0) {
CORE_PIN0_CONFIG = PORT_PCR_MUX(2); // MOSI1 = 0 (PTB16)
} else {
CORE_PIN21_CONFIG = PORT_PCR_MUX(2); // MOSI1 = 21 (PTD6)
}
CORE_PIN20_CONFIG = PORT_PCR_MUX(2); // SCK1 = 20 (PTD5)
#endif
}
static uint32_t spiGetClockSetting (uint32_t clock, uint32_t baseFrequency) {
uint32_t br;
if (clock >= baseFrequency / 2) { br = SPI_BR_SPPR(0) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 4) { br = SPI_BR_SPPR(1) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 6) { br = SPI_BR_SPPR(2) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 8) { br = SPI_BR_SPPR(3) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 10) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 12) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 14) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 16) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(0);
} else if (clock >= baseFrequency / 20) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(1);
} else if (clock >= baseFrequency / 24) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(1);
} else if (clock >= baseFrequency / 28) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(1);
} else if (clock >= baseFrequency / 32) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(1);
} else if (clock >= baseFrequency / 40) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(2);
} else if (clock >= baseFrequency / 48) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(2);
} else if (clock >= baseFrequency / 56) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(2);
} else if (clock >= baseFrequency / 64) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(2);
} else if (clock >= baseFrequency / 80) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(3);
} else if (clock >= baseFrequency / 96) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(3);
} else if (clock >= baseFrequency / 112) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(3);
} else if (clock >= baseFrequency / 128) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(3);
} else if (clock >= baseFrequency / 160) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(4);
} else if (clock >= baseFrequency / 192) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(4);
} else if (clock >= baseFrequency / 224) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(4);
} else if (clock >= baseFrequency / 256) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(4);
} else if (clock >= baseFrequency / 320) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(5);
} else if (clock >= baseFrequency / 384) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(5);
} else if (clock >= baseFrequency / 448) { br = SPI_BR_SPPR(6) | SPI_BR_SPR(5);
} else if (clock >= baseFrequency / 512) { br = SPI_BR_SPPR(7) | SPI_BR_SPR(5);
} else if (clock >= baseFrequency / 640) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(6);
} else if (clock >= baseFrequency / 768) { br = SPI_BR_SPPR(5) | SPI_BR_SPR(6);
} else if (clock >= baseFrequency /1280) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(7);
} else if (clock >= baseFrequency /2560) { br = SPI_BR_SPPR(4) | SPI_BR_SPR(8);
} else /* baseFrequency / 4096 */ { br = SPI_BR_SPPR(7) | SPI_BR_SPR(8);
}
return br;
}
void spiDisable (bool multipleChannels)
{
SPI1_C1 = 0;
if (multipleChannels)
{
SPI0_C1 = 0;
}
}
void spi0Setup(uint32_t clock)
{
// set baud rate
SPI0_BR = spiGetClockSetting (clock, F_BUS);
// read status register to clear flags
SPI0_S;
}
void spi1Setup(uint32_t clock)
{
// set baud rate
SPI1_BR = spiGetClockSetting (clock, F_PLL/2);
// read status register to clear flags
SPI1_S;
}
inline void spi0StartTransfer ()
{
SPI0_DL = 0;
SPI0_DH = 0;
}
inline void spi1StartTransfer ()
{
SPI1_DL = 0;
SPI1_DH = 0;
}
inline void startSPIClock (bool multipleChannels,
uint32_t cpuClockTicks)
{
volatile uint8_t *SPI0_DH_reg = &SPI0_DH;
volatile uint8_t *SPI1_DH_reg = &SPI1_DH;
uint32_t SPI_DH_value = 0;
//digitalWriteFast (TIMING_PIN_0, LOW);
if (multipleChannels)
{
// start channel 1 (SPI0) before channel 0 (SPI1) since channel 0 is
// used to tell if done (0 will finish first if it is started first)
SPI1_DL = 0;
SPI0_DL = 0;
if (cpuClockTicks <= 4)
{
// start the SPI channels 4 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"strb %[SPI_DH_value], [%[SPI0_DH_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"strb %[SPI_DH_value], [%[SPI1_DH_reg]]\n\t"
: [SPI0_DH_reg] "+r" (SPI0_DH_reg),
[SPI1_DH_reg] "+r" (SPI1_DH_reg),
[SPI_DH_value] "+r" (SPI_DH_value)
:: "cc");
}
else if (cpuClockTicks <= 8)
{
// start the SPI channels 8 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"strb %[SPI_DH_value], [%[SPI0_DH_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"strb %[SPI_DH_value], [%[SPI1_DH_reg]]\n\t"
: [SPI0_DH_reg] "+r" (SPI0_DH_reg),
[SPI1_DH_reg] "+r" (SPI1_DH_reg),
[SPI_DH_value] "+r" (SPI_DH_value)
:: "cc");
}
else if (cpuClockTicks <= 16)
{
// start the SPI channels 16 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"strb %[SPI_DH_value], [%[SPI0_DH_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"strb %[SPI_DH_value], [%[SPI1_DH_reg]]\n\t"
: [SPI0_DH_reg] "+r" (SPI0_DH_reg),
[SPI1_DH_reg] "+r" (SPI1_DH_reg),
[SPI_DH_value] "+r" (SPI_DH_value)
:: "cc");
}
else
{
SPI0_DH = 0;
SPI1_DH = 0;
}
}
else
{
spi1StartTransfer ();
}
//digitalWriteFast (TIMING_PIN_0, HIGH);
// wait for transmit buffer to be ready for next transfer
while (!(SPI1_S & SPI_S_SPTEF)) ; // wait
//digitalWriteFast (TIMING_PIN_0, LOW);
// No FIFO: SPTEF, FIFO: not needed. don't start next transfer yet
// start a 2nd transfer while waiting for first to complete
spi1StartTransfer ();
if (multipleChannels)
{
// clear status so more data can be sent
SPI0_S;
// start a 2nd transfer while waiting for first to complete
spi0StartTransfer ();
}
}
#else // 3.x
uint32_t prev_SIM_CLKDIV1;
int prevFBUS;
void spi0Initialize()
{
// turn on SPI module clocks
SIM_SCGC6 |= SIM_SCGC6_SPI0 + SIM_SCGC6_SPI1;
// MISO can be pin 12 or pin 8
if (CHAN1 == 12) {
CORE_PIN12_CONFIG = PORT_PCR_MUX(2); // DIN/MISO = 12 (PTC7)
} else {
CORE_PIN8_CONFIG = PORT_PCR_MUX(2); // DIN/MISO = 8 (PTD3)
}
#if SPI_DEBUG
CORE_PIN11_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2); // DOUT/MOSI = 11 (PTC6)
if (0) {
CORE_PIN13_CONFIG = PORT_PCR_DSE | PORT_PCR_MUX(2); // SCK = 13 (PTC5)
} else {
CORE_PIN14_CONFIG = PORT_PCR_MUX(2); // SCK = 14 (PTD1)
}
#endif
}
void spi1Initialize()
{
// turn on SPI module clocks
SIM_SCGC6 |= SIM_SCGC6_SPI0 + SIM_SCGC6_SPI1;
// MISO can be pin 1 or pin 26
if (CHAN0 == 1) {
CORE_PIN1_CONFIG = PORT_PCR_MUX(2); // DIN/MISO = 40 ()
// move UART TX to pin 5
CORE_PIN5_CONFIG = PORT_PCR_MUX(3); // UART0_TX = 64 ()
} else {
CORE_PIN26_CONFIG = PORT_PCR_MUX(2); // DIN/MISO = 2 ()
}
#if SPI_DEBUG
CORE_PIN0_CONFIG = PORT_PCR_MUX(2); // MOSI
#endif
}
void spi0Setup(uint32_t clock)
{
SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
// set control register for correct clock setting and 16 bit transfers
SPI0_CTAR0 = spiGetClockSetting (clock) | SPI_CTAR_FMSZ(15); //// | SPI_CTAR_LSBFE;
// clear Rx FIFO not empty flag, Tx FIFO Underflow, RxFIFO Overflow
SPI0_SR = SPI_SR_RFDF | SPI_SR_TFUF | SPI_SR_RFOF;
}
void spi1Setup(uint32_t clock)
{
// if F_BUS is adjusted, need to adjust this also to compensate
uint32_t adjustedClock = clock;
int newFBUS = getCurrentFBUS ();
// save original value
prev_SIM_CLKDIV1 = SIM_CLKDIV1;
prevFBUS = getCurrentFBUS ();
// check for need for F_BUS speed increase
if (F_CPU < 150000000)
{
if (clock >= F_BUS)
{
// set F_BUS equal to F_CPU
SIM_CLKDIV1 = (SIM_CLKDIV1 & ~SIM_CLKDIV1_OUTDIV2(0x0F)) | SIM_CLKDIV1_OUTDIV2(0);
newFBUS = F_CPU;
// set F_MEM to F_CPU / 4 (only affects 120 and 144 MHz F_CPU)
SIM_CLKDIV1 = (SIM_CLKDIV1 & ~SIM_CLKDIV1_OUTDIV4(0x0F)) | SIM_CLKDIV1_OUTDIV4(3);
} else {
// set F_BUS equal to F_CPU / 2 (only affects 144 MHz F_CPU)
SIM_CLKDIV1 = (SIM_CLKDIV1 & ~SIM_CLKDIV1_OUTDIV2(0x0F)) | SIM_CLKDIV1_OUTDIV2(1);
newFBUS = F_CPU / 2;
if (F_CPU == 144000000) {
adjustedClock = adjustedClock * 2 / 3;
}
}
}
// F_CPU > 150 MHz
else if (clock >= F_BUS * 2)
{
// set F_BUS equal to F_CPU
SIM_CLKDIV1 = (SIM_CLKDIV1 & ~SIM_CLKDIV1_OUTDIV2(0x0F)) | SIM_CLKDIV1_OUTDIV2(0);
newFBUS = F_CPU;
}
// F_CPU > 150 MHz
else
{
// set F_BUS equal to F_CPU / 2
SIM_CLKDIV1 = (SIM_CLKDIV1 & ~SIM_CLKDIV1_OUTDIV2(0x0F)) | SIM_CLKDIV1_OUTDIV2(1);
newFBUS = F_CPU / 2;
adjustedClock = adjustedClock / 2;
}
SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
// set control register for correct clock setting and 16 bit transfers
SPI1_CTAR0 = spiGetClockSetting (adjustedClock) | SPI_CTAR_FMSZ(15); //// | SPI_CTAR_LSBFE;
// clear Rx FIFO not empty flag, Tx FIFO Underflow, RxFIFO Overflow
SPI1_SR = SPI_SR_RFDF | SPI_SR_TFUF | SPI_SR_RFOF;
setupTestFrequencies (newFBUS);
}
static uint32_t spiGetClockSetting (uint32_t clock) {
uint32_t t;
if (clock >= F_BUS / 2) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 3) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 4) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 5) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_DBR | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 6) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 8) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
} else if (clock >= F_BUS / 10) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(0) | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 12) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(1);
} else if (clock >= F_BUS / 16) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
} else if (clock >= F_BUS / 20) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(1) | SPI_CTAR_CSSCK(0);
} else if (clock >= F_BUS / 24) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
} else if (clock >= F_BUS / 32) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
} else if (clock >= F_BUS / 40) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
} else if (clock >= F_BUS / 48) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
} else if (clock >= F_BUS / 56) { t = SPI_CTAR_PBR(3) | SPI_CTAR_BR(3) | SPI_CTAR_CSSCK(2);
} else if (clock >= F_BUS / 64) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
} else if (clock >= F_BUS / 80) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(4) | SPI_CTAR_CSSCK(3);
} else if (clock >= F_BUS / 96) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
} else if (clock >= F_BUS / 128) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
} else if (clock >= F_BUS / 160) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(5) | SPI_CTAR_CSSCK(4);
} else if (clock >= F_BUS / 192) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
} else if (clock >= F_BUS / 256) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
} else if (clock >= F_BUS / 320) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(6) | SPI_CTAR_CSSCK(5);
} else if (clock >= F_BUS / 384) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
} else if (clock >= F_BUS / 512) { t = SPI_CTAR_PBR(0) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
} else if (clock >= F_BUS / 640) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(7) | SPI_CTAR_CSSCK(6);
} else if (clock >= F_BUS / 768) { t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(7);
} else if (clock >= F_BUS /1280) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(8) | SPI_CTAR_CSSCK(6);
} else if (clock >= F_BUS /2560) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(9) | SPI_CTAR_CSSCK(8);
} else if (clock >= F_BUS /5120) { t = SPI_CTAR_PBR(2) | SPI_CTAR_BR(10)| SPI_CTAR_CSSCK(9);
} else { /* F_BUS / 10240 */ t = SPI_CTAR_PBR(1) | SPI_CTAR_BR(11)| SPI_CTAR_CSSCK(10);
}
return t;
}
void spiDisable (bool multipleChannels)
{
// wait for data to finish transmitting
delay (10);
SPI1_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
if (multipleChannels) {
SPI0_MCR = SPI_MCR_MDIS | SPI_MCR_HALT | SPI_MCR_PCSIS(0x1F);
}
// turn off SPI module clocks
SIM_SCGC6 &= ~(SIM_SCGC6_SPI0 + SIM_SCGC6_SPI1);
// restore original value
SIM_CLKDIV1 = prev_SIM_CLKDIV1;
setupTestFrequencies (prevFBUS);
}
inline void startSPIClock (bool multipleChannels,
uint32_t cpuClockTicks)
{
// ensure that FIFO's are empty (had a problem with this)
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
if (multipleChannels) {
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
// start channel 1 (SPI0) before channel 0 (SPI1) since channel 0 is
// used to tell if done (0 will finish first if it is started first)
volatile uint32_t *SPI0_PUSHR_reg = &SPI0_PUSHR;
volatile uint32_t *SPI1_PUSHR_reg = &SPI1_PUSHR;
uint32_t SPI_PUSHR_value = SPI_PUSHR_CONT;
volatile uint32_t *SPI0_MCR_reg = &SPI0_MCR;
volatile uint32_t *SPI1_MCR_reg = &SPI1_MCR;
uint32_t SPI_MCR_value = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CONT_SCKE | SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
if (cpuClockTicks <= 2) {
// start the SPI channels 2 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"str %[SPI_MCR_value], [%[SPI0_MCR_reg]]\n\t"
"str %[SPI_MCR_value], [%[SPI1_MCR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
: [SPI0_PUSHR_reg] "+r" (SPI0_PUSHR_reg),
[SPI1_PUSHR_reg] "+r" (SPI1_PUSHR_reg),
[SPI_PUSHR_value] "+r" (SPI_PUSHR_value),
[SPI0_MCR_reg] "+r" (SPI0_MCR_reg),
[SPI1_MCR_reg] "+r" (SPI1_MCR_reg),
[SPI_MCR_value] "+r" (SPI_MCR_value)
:: "cc");
} else if (cpuClockTicks <= 4) {
// start the SPI channels 4 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"str %[SPI_MCR_value], [%[SPI0_MCR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_MCR_value], [%[SPI1_MCR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
: [SPI0_PUSHR_reg] "+r" (SPI0_PUSHR_reg),
[SPI1_PUSHR_reg] "+r" (SPI1_PUSHR_reg),
[SPI_PUSHR_value] "+r" (SPI_PUSHR_value),
[SPI0_MCR_reg] "+r" (SPI0_MCR_reg),
[SPI1_MCR_reg] "+r" (SPI1_MCR_reg),
[SPI_MCR_value] "+r" (SPI_MCR_value)
:: "cc");
} else if (cpuClockTicks <= 8) {
// start the SPI channels 8 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"str %[SPI_MCR_value], [%[SPI0_MCR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_MCR_value], [%[SPI1_MCR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
: [SPI0_PUSHR_reg] "+r" (SPI0_PUSHR_reg),
[SPI1_PUSHR_reg] "+r" (SPI1_PUSHR_reg),
[SPI_PUSHR_value] "+r" (SPI_PUSHR_value),
[SPI0_MCR_reg] "+r" (SPI0_MCR_reg),
[SPI1_MCR_reg] "+r" (SPI1_MCR_reg),
[SPI_MCR_value] "+r" (SPI_MCR_value)
:: "cc");
} else if (cpuClockTicks <= 12) {
// start the SPI channels 12 ticks apart, so they are exactly
// 1 sample apart. This will be corrected in rearrangeBufferValues
// after recording is complete.
asm volatile (".align 2\n\t"
"str %[SPI_MCR_value], [%[SPI0_MCR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_MCR_value], [%[SPI1_MCR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI0_PUSHR_reg]]\n\t"
"str %[SPI_PUSHR_value], [%[SPI1_PUSHR_reg]]\n\t"
: [SPI0_PUSHR_reg] "+r" (SPI0_PUSHR_reg),
[SPI1_PUSHR_reg] "+r" (SPI1_PUSHR_reg),
[SPI_PUSHR_value] "+r" (SPI_PUSHR_value),
[SPI0_MCR_reg] "+r" (SPI0_MCR_reg),
[SPI1_MCR_reg] "+r" (SPI1_MCR_reg),
[SPI_MCR_value] "+r" (SPI_MCR_value)
:: "cc");
} else {
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
// clear FIFO
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
SPI1_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_POPR;
SPI0_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CONT_SCKE;
SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CONT_SCKE;
SPI0_PUSHR = SPI_PUSHR_CONT;
SPI0_PUSHR = SPI_PUSHR_CONT;
SPI1_PUSHR = SPI_PUSHR_CONT;
SPI1_PUSHR = SPI_PUSHR_CONT;
}
// continue to fill FIFO's
SPI0_PUSHR = SPI_PUSHR_CONT;
SPI0_PUSHR = SPI_PUSHR_CONT;
} else {
SPI1_MCR = SPI_MCR_MSTR | SPI_MCR_PCSIS(0x1F) | SPI_MCR_CONT_SCKE;
// start
SPI1_PUSHR = SPI_PUSHR_CONT;
SPI1_PUSHR = SPI_PUSHR_CONT;
}
// continue to fill FIFO's
SPI1_PUSHR = SPI_PUSHR_CONT;
SPI1_PUSHR = SPI_PUSHR_CONT;
}
#endif
#endif