-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCAIlib.rs
225 lines (216 loc) · 9.7 KB
/
CAIlib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
use std::process::Command;
use std::process;
use std::fs::File;
use std::str::FromStr;
use std::error::Error;
use std::{str,env};
use regex::{Regex, RegexBuilder};
use math::mean;
use std::vec::Vec;
use std::collections::HashMap;
use std::iter::Enumerate;
use std::io::{self, prelude::*, BufReader};
use std::collections::BTreeMap;
use core::ops::Range;
use std::convert::AsRef;
use std::path::Path;
use core::cmp::{min, max};
fn generate_CAI(sequences: Vec<String>, synonymous_codons: &HashMap<&str,Vec<&str>>) -> HashMap<String,f32> {
//create a hashmap of expected sequence weights per codon as float
let mut sequence_weights: HashMap<String, f32> = HashMap::new();
let mut seqvec: Vec<String> = Vec::new();
let mut seqylen: f32 = 0.0;
for seq in sequences {
let mut seq = &seq.to_ascii_uppercase();
for i in 0..seq.len() {
if i < seq.len()-3 {
seqvec.push(seq[i..i+3].to_string());
}
}
}
let sv = seqvec.clone();
for j in 0..seqvec.len() {
*sequence_weights.entry(sv[j].to_string()).or_insert(0.0)+=1.0;
seqylen+=1.0;
}
let numcodons = sequence_weights.keys().len();
let seqcodons: Vec<_> = sequence_weights.keys().cloned().collect();
for seqcodon in seqcodons {
let val = sequence_weights[&seqcodon] as f32/(seqylen as f32/numcodons as f32);
let val2 = synonymous_codons[&*seqcodon].len() as f32;
let vall = if val2 != 0.0 { 1.0/val2 } else { 0.5 };
sequence_weights.insert(seqcodon,val/vall);
}
sequence_weights
}
fn generate_GC(seq: String, gccontent: f32, synonymous_codons: &HashMap<&str,Vec<&str>>) -> f32 {
//finds the GC content of a coding frame sequence as a string and returns a float of the percentage GC content
let mut resultGC: f32 = 0.0;
let frames = vec![0,1,2];
for frame in frames {
let mut cods: Vec<_> = Vec::new();
for i in frame..seq.len() {
if i < seq.len() - (3+frame) {
cods.push(seq[i..i+3].to_string());
}
}
let mut countgc = 0;
for cod in &cods {
match cod.chars().last().unwrap() {
'G' => countgc+=1,
'C' => countgc+=1,
_ => (),
};
}
resultGC = (countgc as f32)/gccontent;
//resultGC.insert(frame as u32,(countgc as f32)/gccontent);
}
resultGC
}
fn load_CAI(file: String) -> HashMap<String, f32> {
//for loading a file with CAI stats
let filer = File::open(&file).expect("problem opening CAI stats filename");
let mut loaded_weights: HashMap<String,f32> = HashMap::new();
let mut readery = BufReader::new(filer);
for line in readery.lines() {
let lin = line.unwrap();
if lin.len() > 1 {
let mut elements = lin.split(",").collect::<Vec<&str>>();
loaded_weights.insert(elements[0].to_string(),elements[1].parse::<f32>().unwrap());
}
}
loaded_weights
}
fn relative_adaptiveness(seq: String, sequence_weights: HashMap<String,f32>, synonymous_codons: &HashMap<&str,Vec<&str>> ) -> HashMap<String,f32> {
// the relative adaptiveness is the frequency of that codon compared to the freq of the optimal
//create a hashmap with the relative adaptiveness values per codon on the sequence compared to the optimal
let mut seqy = &seq.to_ascii_uppercase();
let mut seqyvec: Vec<String> = Vec::new();
let mut comparison_weights: HashMap<String, f32> = HashMap::new();
let mut final_weights: HashMap<String, f32> = HashMap::new();
let mut seqylen: f32 = 0.0;
for i in 0..seqy.len() {
if i < seqy.len()-3 {
seqyvec.push(seqy[i..i+3].to_string());
}
}
for k in 0..seqyvec.len() {
*comparison_weights.entry(seqyvec[k].to_string()).or_insert(0.0)+=1.0;
seqylen+=1.0;
}
let seqycodons: Vec<_> = comparison_weights.keys().cloned().collect();
let numcodons = sequence_weights.keys().len();
for seqycodon in seqycodons {
let valy = comparison_weights[&seqycodon] as f32/(seqylen as f32/numcodons as f32);
let val2 = synonymous_codons[&*seqycodon].len() as f32;
let vall = if val2 != 0.0 { 1.0/val2 } else { 0.5 };
comparison_weights.insert(seqycodon,valy/vall);
}
let realcodons: Vec<_> = comparison_weights.keys().cloned().collect();
for realcod in realcodons {
let orig_weight = sequence_weights[&realcod];
let new_weight = comparison_weights[&realcod];
final_weights.insert(realcod,new_weight/orig_weight);
}
final_weights
}
fn CAI(testseq: String, final_weights: HashMap<String,f32>) -> f64 {
let seqycodons: Vec<_> = final_weights.keys().cloned().collect();
let mut collvec = Vec::new();
//collect weights on codon sequences excluding stops and starts
for seq in seqycodons {
if &seq != "ATG|TGG|TGA|TAG|TAA" {
collvec.push(final_weights[&seq] as f64);
}
}
//codon adaptation index is the geometric mean of the values
let res = mean::geometric(&collvec.as_slice());
res
}
pub fn achieve_CAI(testing_cai: HashMap<(i32,i32),String>, gccontent: f32) -> HashMap<(i32,i32),f32> {
//returns a hashmap of testing sequences by location and single float value of the CAI
let mut seqsannot: AnnotMap<String, String> = AnnotMap::new();
let mut synonymous_codons = HashMap::new();
//inserting the codon synonymns
synonymous_codons.insert("TTA",vec!["TTG","CTT","CTC","CTA","CTG"]);
synonymous_codons.insert("ATG",vec!["ATG"]);
synonymous_codons.insert("TTT",vec!["TTC"]);
synonymous_codons.insert("TTC",vec!["TTT"]);
synonymous_codons.insert("TAA",vec!["TGA","TAG"]);
synonymous_codons.insert("TGA",vec!["TAA","TAG"]);
synonymous_codons.insert("TAG",vec!["TAA","TGA"]);
synonymous_codons.insert("TTG",vec!["TTA","CTT","CTC","CTA","CTG"]);
synonymous_codons.insert("CTT",vec!["TTA","TTG","CTC","CTA","CTG"]);
synonymous_codons.insert("CTC",vec!["TTA","TTG","CTT","CTA","CTG"]);
synonymous_codons.insert("CTA",vec!["TTA","TTG","CTT","CTC","CTG"]);
synonymous_codons.insert("CTG",vec!["TTA","TTG","CTT","CTC","CTA"]);
synonymous_codons.insert("ATT",vec!["ATC","ATA"]);
synonymous_codons.insert("ATC",vec!["ATT","ATA"]);
synonymous_codons.insert("ATA",vec!["ATC","ATT"]);
synonymous_codons.insert("GTT",vec!["GTC","GTA","GTG"]);
synonymous_codons.insert("GTA",vec!["GTC","GTT","GTG"]);
synonymous_codons.insert("GTC",vec!["GTT","GTA","GTG"]);
synonymous_codons.insert("GTG",vec!["GTT","GTC","GTA"]);
synonymous_codons.insert("TCT",vec!["TCC","TCA","TCG","AGT","AGC"]);
synonymous_codons.insert("TCC",vec!["TCT","TCA","TCG","AGT","AGC"]);
synonymous_codons.insert("TCA",vec!["TCT","TCC","TCG","AGT","AGC"]);
synonymous_codons.insert("TCG",vec!["TCC","TCT","TCA","AGT","AGC"]);
synonymous_codons.insert("AGT",vec!["TCC","TCT","TCA","TCG","AGC"]);
synonymous_codons.insert("AGC",vec!["TCC","TCT","TCA","TCG","AGT"]);
synonymous_codons.insert("CCT",vec!["CCC","CCA","CCG"]);
synonymous_codons.insert("CCC",vec!["CCT","CCA","CCG"]);
synonymous_codons.insert("CCA",vec!["CCC","CCT","CCG"]);
synonymous_codons.insert("CCG",vec!["CCC","CCT","CCA"]);
synonymous_codons.insert("ACT",vec!["ACC","ACA","ACG"]);
synonymous_codons.insert("ACC",vec!["ACT","ACA","ACG"]);
synonymous_codons.insert("ACA",vec!["ACT","ACC","ACG"]);
synonymous_codons.insert("ACG",vec!["ACT","ACC","ACA"]);
synonymous_codons.insert("GCT",vec!["GCC","GCA","GCG"]);
synonymous_codons.insert("GCC",vec!["GCT","GCA","GCG"]);
synonymous_codons.insert("GCA",vec!["GCT","GCC","GCG"]);
synonymous_codons.insert("GCG",vec!["GCT","GCC","GCA"]);
synonymous_codons.insert("TAT",vec!["TAC"]);
synonymous_codons.insert("TAC",vec!["TAT"]);
synonymous_codons.insert("CAT",vec!["CAC"]);
synonymous_codons.insert("CAC",vec!["CAT"]);
synonymous_codons.insert("CAA",vec!["CAG"]);
synonymous_codons.insert("CAG",vec!["CAA"]);
synonymous_codons.insert("AAT",vec!["AAC"]);
synonymous_codons.insert("AAC",vec!["AAT"]);
synonymous_codons.insert("AAA",vec!["AAG"]);
synonymous_codons.insert("AAG",vec!["AAA"]);
synonymous_codons.insert("GAT",vec!["GAC"]);
synonymous_codons.insert("GAC",vec!["GAT"]);
synonymous_codons.insert("GAA",vec!["GAG"]);
synonymous_codons.insert("GAG",vec!["GAA"]);
synonymous_codons.insert("TGT",vec!["TGC"]);
synonymous_codons.insert("TGC",vec!["TGT"]);
synonymous_codons.insert("TGG",vec!["TGG"]);
synonymous_codons.insert("CGT",vec!["CGC","CGA","CGG","AGA","AGG"]);
synonymous_codons.insert("CGC",vec!["CGT","CGA","CGG","AGA","AGG"]);
synonymous_codons.insert("CGA",vec!["CGT","CGC","CGG","AGA","AGG"]);
synonymous_codons.insert("CGG",vec!["CGT","CGC","CGA","AGA","AGG"]);
synonymous_codons.insert("AGA",vec!["CGT","CGC","CGA","CGG","AGG"]);
synonymous_codons.insert("AGG",vec!["CGT","CGC","CGA","CGG","AGA"]);
synonymous_codons.insert("AGT",vec!["AGC"]);
synonymous_codons.insert("AGC",vec!["AGT"]);
synonymous_codons.insert("GGT",vec!["GGC","GGA","GGG"]);
synonymous_codons.insert("GGC",vec!["GGT","GGA","GGG"]);
synonymous_codons.insert("GGA",vec!["GGT","GGC","GGG"]);
synonymous_codons.insert("GGG",vec!["GGT","GGA","GGC"]);
let mut list_o_seqs: Vec<String> = Vec::new();
for (_,seqa) in &testing_cai {
list_o_seqs.push(seqa.to_string());
}
let seqkeys: Vec<_> = testing_cai.keys().cloned().collect();
let mut final_result: f32 = 0.0;
let mut return_results: HashMap<(i32,i32),f32> = HashMap::new();
//collect the relative adaptiveness values per tested sequence
let mut results = generate_CAI(list_o_seqs, &synonymous_codons);
for seqkey in seqkeys {
let newi = relative_adaptiveness(testing_cai[&seqkey].clone(),results.clone(),&synonymous_codons);
final_result = CAI(testing_cai[&seqkey].clone(), newi);
return_results.insert(seqkey,final_result);
}
return_results
}