-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
942 lines (856 loc) · 63.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
import copy
import os
import torch
import esm.data
from datasets.moad import MOAD
from utils.molecules_utils import get_symmetry_rmsd
torch.multiprocessing.set_sharing_strategy('file_system')
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
import time
from argparse import ArgumentParser, Namespace, FileType
from datetime import datetime
from functools import partial
import numpy as np
import pandas as pd
import scipy
import wandb
from biopandas.pdb import PandasPdb
import plotly.express as px
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from rdkit import Chem
from rdkit.Chem import AllChem, RemoveHs, RemoveAllHs
import subprocess
from datasets.process_mols import write_mol_with_coords, read_molecule
import re
from utils import so3
from datasets.pdbbind import PDBBind, read_mol, NoiseTransform
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule, \
get_inverse_schedule
from utils.diffusion_utils import set_time
from utils.sampling import randomize_position, sampling
from utils.training import loss_function
from utils.utils import get_model, remove_all_hs, read_strings_from_txt, ExponentialMovingAverage
from utils.visualise import PDBFile
from tqdm import tqdm
from relax.xtb import optimize_complex
RDLogger.DisableLog('rdApp.*')
import yaml
import pickle
def get_dataset(args, model_args, filtering=False):
if args.dataset != 'moad':
dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes, dataset=args.dataset,
chain_cutoff=args.chain_cutoff,
receptor_radius=model_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=model_args.c_alpha_max_neighbors,
matching=not model_args.no_torsion, keep_original=True,
popsize=args.matching_popsize,
maxiter=args.matching_maxiter,
all_atoms=model_args.all_atoms if 'all_atoms' in model_args else False,
atom_radius=model_args.atom_radius if 'all_atoms' in model_args else None,
atom_max_neighbors=model_args.atom_max_neighbors if 'all_atoms' in model_args else None,
esm_embeddings_path=args.esm_embeddings_path,
require_ligand=True,
num_workers=args.num_workers,
protein_file=args.protein_file,
ligand_file=args.ligand_file,
knn_only_graph=True if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph,
include_miscellaneous_atoms=False if not hasattr(args,
'include_miscellaneous_atoms') else args.include_miscellaneous_atoms,
num_conformers=args.samples_per_complex if args.resample_rdkit and not filtering else 1)
else:
dataset = MOAD(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
chain_cutoff=args.chain_cutoff,
receptor_radius=model_args.receptor_radius,
cache_path=args.cache_path, split=args.split,
remove_hs=model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=model_args.c_alpha_max_neighbors,
matching=not model_args.no_torsion, keep_original=True,
popsize=args.matching_popsize,
maxiter=args.matching_maxiter,
all_atoms=model_args.all_atoms if 'all_atoms' in model_args else False,
atom_radius=model_args.atom_radius if 'all_atoms' in model_args else None,
atom_max_neighbors=model_args.atom_max_neighbors if 'all_atoms' in model_args else None,
esm_embeddings_path=args.esm_embeddings_path,
esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path,
require_ligand=True,
num_workers=args.num_workers,
knn_only_graph=True if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph,
include_miscellaneous_atoms=False if not hasattr(args,
'include_miscellaneous_atoms') else args.include_miscellaneous_atoms,
num_conformers=args.samples_per_complex if args.resample_rdkit and not filtering else 1,
unroll_clusters=args.unroll_clusters, remove_pdbbind=args.remove_pdbbind,
min_ligand_size=args.min_ligand_size,
max_receptor_size=args.max_receptor_size,
single_cluster_name=args.single_cluster_name,
remove_promiscuous_targets=args.remove_promiscuous_targets,
no_randomness=True,
skip_matching=args.skip_matching)
return dataset
if __name__ == '__main__':
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--model_dir', type=str, default='workdir', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--filtering_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--filtering_ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--num_cpu', type=int, default=None, help='if this is a number instead of none, the max number of cpus used by torch will be set to this.')
parser.add_argument('--run_name', type=str, default='test', help='')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--out_dir', type=str, default=None, help='Where to save results to')
parser.add_argument('--batch_size', type=int, default=40, help='Number of poses to sample in parallel')
parser.add_argument('--old_score_model', action='store_true', default=False, help='')
parser.add_argument('--old_filtering_model', action='store_true', default=False, help='')
parser.add_argument('--matching_popsize', type=int, default=40, help='Differential evolution popsize parameter in matching')
parser.add_argument('--matching_maxiter', type=int, default=40, help='Differential evolution maxiter parameter in matching')
parser.add_argument('--esm_embeddings_path', type=str, default=None, help='If this is set then the LM embeddings at that path will be used for the receptor features')
parser.add_argument('--moad_esm_embeddings_sequences_path', type=str, default=None, help='')
parser.add_argument('--chain_cutoff', type=float, default=None, help='Cutoff of the chains from the ligand') # TODO remove
parser.add_argument('--use_full_size_protein_file', action='store_true', default=False, help='') # TODO remove
parser.add_argument('--use_original_protein_file', action='store_true', default=False, help='') # TODO remove
parser.add_argument('--save_complexes', action='store_true', default=False, help='Save generated complex graphs')
parser.add_argument('--complexes_save_path', type=str, default=None, help='')
parser.add_argument('--dataset', type=str, default='moad', help='')
parser.add_argument('--cache_path', type=str, default='data/cacheMOAD', help='Folder from where to load/restore cached dataset')
parser.add_argument('--data_dir', type=str, default='data/BindingMOAD_2020_processed/', help='Folder containing original structures')
parser.add_argument('--split_path', type=str, default='data/BindingMOAD_2020_processed/splits/val.txt', help='Path of file defining the split')
parser.add_argument('--no_model', action='store_true', default=False, help='Whether to return seed conformer without running model')
parser.add_argument('--no_random', action='store_true', default=False, help='Whether to add randomness in diffusion steps')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Whether to add noise after the final step')
parser.add_argument('--overwrite_no_final_step_noise', default=False, help='This sets wandb to True if it is True. It exists for wandb sweeps.') # TODO remove
parser.add_argument('--ode', action='store_true', default=False, help='Whether to run the probability flow ODE')
parser.add_argument('--wandb', action='store_true', default=False, help='') # TODO remove
parser.add_argument('--overwrite_wandb', default=False, help='This sets wandb to True if it is True. It exists for wandb sweeps.') # TODO remove
parser.add_argument('--inference_steps', type=int, default=5, help='Number of denoising steps')
parser.add_argument('--limit_complexes', type=int, default=10, help='Limit to the number of complexes')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for dataset creation')
parser.add_argument('--tqdm', action='store_true', default=False, help='Whether to show progress bar')
parser.add_argument('--save_visualisation', action='store_true', default=True, help='Whether to save visualizations')
parser.add_argument('--samples_per_complex', type=int, default=4, help='Number of poses to sample for each complex')
parser.add_argument('--resample_rdkit', action='store_true', default=False, help='')
parser.add_argument('--skip_matching', action='store_true', default=False, help='')
parser.add_argument('--sigma_schedule', type=str, default='expbeta', help='Schedule type, no other options')
parser.add_argument('--inf_sched_alpha', type=float, default=1, help='Alpha parameter of beta distribution for t sched')
parser.add_argument('--inf_sched_beta', type=float, default=1, help='Beta parameter of beta distribution for t sched')
parser.add_argument('--different_schedules', action='store_true', default=False, help='')
parser.add_argument('--overwrite_different_schedules', default=False, help='This sets different_schedules to True if it is True. It exists for wandb sweeps.')
parser.add_argument('--rot_sigma_schedule', type=str, default='expbeta', help='')
parser.add_argument('--rot_inf_sched_alpha', type=float, default=1, help='Alpha parameter of beta distribution for t sched')
parser.add_argument('--rot_inf_sched_beta', type=float, default=1, help='Beta parameter of beta distribution for t sched')
parser.add_argument('--tor_sigma_schedule', type=str, default='expbeta', help='')
parser.add_argument('--tor_inf_sched_alpha', type=float, default=1, help='Alpha parameter of beta distribution for t sched')
parser.add_argument('--tor_inf_sched_beta', type=float, default=1, help='Beta parameter of beta distribution for t sched')
parser.add_argument('--pocket_knowledge', action='store_true', default=False, help='')
parser.add_argument('--no_random_pocket', action='store_true', default=False, help='')
parser.add_argument('--overwrite_pocket_knowledge', default=False, help='')
parser.add_argument('--pocket_tr_max', type=float, default=3, help='')
parser.add_argument('--pocket_cutoff', type=float, default=5, help='')
parser.add_argument('--actual_steps', type=int, default=None, help='')
parser.add_argument('--xtb', action='store_true', default=False, help='')
parser.add_argument('--use_true_pivot', action='store_true', default=False, help='')
parser.add_argument('--restrict_cpu', action='store_true', default=False, help='')
parser.add_argument('--force_fixed_center_conv', action='store_true', default=False, help='')
parser.add_argument('--protein_file', type=str, default='protein_processed', help='')
parser.add_argument('--unroll_clusters', action='store_true', default=True, help='')
parser.add_argument('--ligand_file', type=str, default='ligand', help='')
parser.add_argument('--remove_pdbbind', action='store_true', default=False, help='')
parser.add_argument('--split', type=str, default='val', help='')
parser.add_argument('--limit_failures', type=float, default=5, help='')
parser.add_argument('--min_ligand_size', type=float, default=0, help='')
parser.add_argument('--max_receptor_size', type=float, default=None, help='')
parser.add_argument('--remove_promiscuous_targets', type=float, default=None, help='')
parser.add_argument('--svgd_weight_log_0', type=float, default=None)
parser.add_argument('--svgd_weight_log_1', type=float, default=None)
parser.add_argument('--svgd_repulsive_weight_log_0', type=float, default=None)
parser.add_argument('--svgd_repulsive_weight_log_1', type=float, default=None)
parser.add_argument('--svgd_langevin_weight_log_0', type=float, default=None)
parser.add_argument('--svgd_langevin_weight_log_1', type=float, default=None)
parser.add_argument('--svgd_kernel_size_log_0', type=float, default=None)
parser.add_argument('--svgd_kernel_size_log_1', type=float, default=None)
parser.add_argument('--svgd_rot_log_rel_weight', type=float, default=0.0)
parser.add_argument('--svgd_tor_log_rel_weight', type=float, default=0.0)
parser.add_argument('--svgd_weight_log', type=float, default=None)
parser.add_argument('--svgd_repulsive_weight_log', type=float, default=None)
parser.add_argument('--svgd_use_x0', type=bool, default=False)
parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
parser.add_argument('--temp_psi_tr', type=float, default=0.0)
parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
parser.add_argument('--temp_psi_rot', type=float, default=0.0)
parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
parser.add_argument('--temp_psi_tor', type=float, default=0.0)
parser.add_argument('--temp_sigma_data', type=float, default=0.5)
parser.add_argument('--single_cluster_name', type=str, default=None, help='')
args = parser.parse_args()
if args.svgd_weight_log is not None:
args.svgd_weight = 10**args.svgd_weight_log
if args.svgd_repulsive_weight_log is not None:
args.svgd_repulsive_weight = 10**args.svgd_repulsive_weight_log
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
if args.restrict_cpu:
threads = 16
os.environ["OMP_NUM_THREADS"] = str(threads) # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = str(threads) # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = str(threads) # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = str(threads) # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = str(threads) # export NUMEXPR_NUM_THREADS=6
os.environ["CUDA_VISIBLE_DEVICES"] = ""
torch.set_num_threads(threads)
if args.overwrite_different_schedules: # This sets different_schedules to True if it is True. It exists for wandb sweeps.
args.different_schedules = True
if args.overwrite_pocket_knowledge: # This sets different_schedules to True if it is True. It exists for wandb sweeps.
args.pocket_knowledge = True
if args.overwrite_wandb: # This sets wandb to True if it is True. It exists for wandb sweeps.
args.wandb = True
if args.overwrite_no_final_step_noise: # This sets wandb to True if it is True. It exists for wandb sweeps.
args.no_final_step_noise = True
if args.out_dir is None: args.out_dir = f'inference_out_dir_not_specified/{args.run_name}'
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if not hasattr(score_model_args, 'separate_noise_schedule'): # exists for compatibility with old runs that did not have the attribute
score_model_args.separate_noise_schedule = False
if not hasattr(score_model_args, 'lm_embeddings_path'):
score_model_args.lm_embeddings_path = None
if not hasattr(score_model_args, 'tr_only_confidence'):
score_model_args.tr_only_confidence = True
if not hasattr(score_model_args, 'high_confidence_threshold'):
score_model_args.high_confidence_threshold = 0.0
if not hasattr(score_model_args, 'include_confidence_prediction'):
score_model_args.include_confidence_prediction = False
if not hasattr(score_model_args, 'confidence_weight'):
score_model_args.confidence_weight = 1
if not hasattr(score_model_args, 'asyncronous_noise_schedule'):
score_model_args.asyncronous_noise_schedule = False
if not hasattr(score_model_args, 'correct_torsion_sigmas'):
score_model_args.correct_torsion_sigmas = False
if not hasattr(score_model_args, 'esm_embeddings_path'):
score_model_args.esm_embeddings_path = None
if args.force_fixed_center_conv:
score_model_args.not_fixed_center_conv = False
if args.filtering_model_dir is not None:
with open(f'{args.filtering_model_dir}/model_parameters.yml') as f:
filtering_args = Namespace(**yaml.full_load(f))
if not os.path.exists(filtering_args.original_model_dir):
print("Path does not exist: ", filtering_args.original_model_dir)
filtering_args.original_model_dir = os.path.join(*filtering_args.original_model_dir.split('/')[-2:])
print('instead trying path: ', filtering_args.original_model_dir)
if not hasattr(filtering_args, 'use_original_model_cache'):
filtering_args.use_original_model_cache = True
if not hasattr(filtering_args, 'esm_embeddings_path'):
filtering_args.esm_embeddings_path = None
if not hasattr(filtering_args, 'num_classification_bins'):
filtering_args.num_classification_bins = 2
if args.num_cpu is not None:
torch.set_num_threads(args.num_cpu)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_dataset = get_dataset(args, score_model_args)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.filtering_model_dir is not None:
if not (filtering_args.use_original_model_cache or filtering_args.transfer_weights):
# if the filtering model uses the same type of data as the original model then we do not need this dataset and can just use the complexes
print('HAPPENING | filtering model uses different type of graphs than the score model. Loading (or creating if not existing) the data for the filtering model now.')
filtering_test_dataset = get_dataset(args, filtering_args, filtering=True)
filtering_complex_dict = {d.name: d for d in filtering_test_dataset}
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
if not args.no_model:
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, old=args.old_score_model)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
if args.ckpt == 'last_model.pt':
model_state_dict = state_dict['model']
ema_weights_state = state_dict['ema_weights']
model.load_state_dict(model_state_dict, strict=True)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=score_model_args.ema_rate)
ema_weights.load_state_dict(ema_weights_state, device=device)
ema_weights.copy_to(model.parameters())
else:
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.filtering_model_dir is not None:
if filtering_args.transfer_weights:
with open(f'{filtering_args.original_model_dir}/model_parameters.yml') as f:
filtering_model_args = Namespace(**yaml.full_load(f))
if not hasattr(filtering_model_args, 'separate_noise_schedule'): # exists for compatibility with old runs that did not have the
# attribute
filtering_model_args.separate_noise_schedule = False
if not hasattr(filtering_model_args, 'lm_embeddings_path'):
filtering_model_args.lm_embeddings_path = None
if not hasattr(filtering_model_args, 'tr_only_confidence'):
filtering_model_args.tr_only_confidence = True
if not hasattr(filtering_model_args, 'high_confidence_threshold'):
filtering_model_args.high_confidence_threshold = 0.0
if not hasattr(filtering_model_args, 'include_confidence_prediction'):
filtering_model_args.include_confidence_prediction = False
if not hasattr(filtering_model_args, 'confidence_dropout'):
filtering_model_args.confidence_dropout = filtering_model_args.dropout
if not hasattr(filtering_model_args, 'confidence_no_batchnorm'):
filtering_model_args.confidence_no_batchnorm = False
if not hasattr(filtering_model_args, 'confidence_weight'):
filtering_model_args.confidence_weight = 1
if not hasattr(filtering_model_args, 'asyncronous_noise_schedule'):
filtering_model_args.asyncronous_noise_schedule = False
if not hasattr(filtering_model_args, 'correct_torsion_sigmas'):
filtering_model_args.correct_torsion_sigmas = False
if not hasattr(filtering_model_args, 'esm_embeddings_path'):
filtering_model_args.esm_embeddings_path = None
if not hasattr(filtering_model_args, 'not_fixed_knn_radius_graph'):
filtering_model_args.not_fixed_knn_radius_graph = True
if not hasattr(filtering_model_args, 'not_knn_only_graph'):
filtering_model_args.not_knn_only_graph = True
else:
filtering_model_args = filtering_args
filtering_model = get_model(filtering_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True, old=args.old_filtering_model)
state_dict = torch.load(f'{args.filtering_model_dir}/{args.filtering_ckpt}', map_location=torch.device('cpu'))
filtering_model.load_state_dict(state_dict, strict=True)
filtering_model = filtering_model.to(device)
filtering_model.eval()
else:
filtering_model = None
filtering_args = None
filtering_model_args = None
if args.wandb:
run = wandb.init(
entity='entity',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
if args.pocket_knowledge and args.different_schedules:
t_max = (np.log(args.pocket_tr_max) - np.log(score_model_args.tr_sigma_min)) / (
np.log(score_model_args.tr_sigma_max) - np.log(score_model_args.tr_sigma_min))
else:
t_max = 1
tr_schedule = get_t_schedule(sigma_schedule=args.sigma_schedule, inference_steps=args.inference_steps,
inf_sched_alpha=args.inf_sched_alpha, inf_sched_beta=args.inf_sched_beta,
t_max=t_max)
t_schedule = None # used only by asyncronous_noise_schedule
if args.different_schedules:
rot_schedule = get_t_schedule(sigma_schedule=args.rot_sigma_schedule, inference_steps=args.inference_steps,
inf_sched_alpha=args.rot_inf_sched_alpha, inf_sched_beta=args.rot_inf_sched_beta)
tor_schedule = get_t_schedule(sigma_schedule=args.tor_sigma_schedule, inference_steps=args.inference_steps,
inf_sched_alpha=args.tor_inf_sched_alpha, inf_sched_beta=args.tor_inf_sched_beta)
print('tr schedule', tr_schedule)
print('rot schedule', rot_schedule)
print('tor schedule', tor_schedule)
elif score_model_args.asyncronous_noise_schedule:
print("asyncronous_noise_schedule")
t_schedule = tr_schedule
tr_schedule = get_inverse_schedule(t_schedule, score_model_args.sampling_alpha, score_model_args.sampling_beta)
rot_schedule = get_inverse_schedule(t_schedule, score_model_args.rot_alpha, score_model_args.rot_beta)
tor_schedule = get_inverse_schedule(t_schedule, score_model_args.tor_alpha, score_model_args.tor_beta)
print('tr schedule', tr_schedule)
print('rot schedule', rot_schedule)
print('tor schedule', tor_schedule)
else:
rot_schedule = tr_schedule
tor_schedule = tr_schedule
print('common t schedule', tr_schedule)
rmsds_list, obrmsds, centroid_distances_list, failures, skipped, min_cross_distances_list, base_min_cross_distances_list, confidences_list, names_list = [], [], [], 0, 0, [], [], [], []
true_affinities_list, pred_affinities_list, run_times, min_self_distances_list, without_rec_overlap_list = [], [], [], [], []
N = args.samples_per_complex
#names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
names_no_rec_overlap = np.load("data/BindingMOAD_2020_processed/test_names_bootstrapping.npy")
print('Size of test dataset: ', len(test_dataset))
#limit_test = ['3zlw']
if args.save_complexes:
sampled_complexes = {}
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
torch.cuda.empty_cache()
if filtering_model is not None and not (
filtering_args.use_original_model_cache or filtering_args.transfer_weights) and orig_complex_graph.name[
0] not in filtering_complex_dict.keys():
skipped += 1
print(
f"HAPPENING | The filtering dataset did not contain {orig_complex_graph.name[0]}. We are skipping this complex.")
continue
success = 0
bs = args.batch_size
while 0 >= success > -args.limit_failures:
try:
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
if args.resample_rdkit:
for i, g in enumerate(data_list):
g['ligand'].pos = g['ligand'].pos[i]
pivot = None
if args.use_true_pivot:
pivot = orig_complex_graph['ligand'].pos
randomize_position(data_list, score_model_args.no_torsion, args.no_random or args.no_random_pocket,
score_model_args.tr_sigma_max if not args.pocket_knowledge else args.pocket_tr_max,
args.pocket_knowledge, args.pocket_cutoff)
pdb = None
if args.save_visualisation:
visualization_list = []
for idx, graph in enumerate(data_list):
lig = orig_complex_graph.mol[0]
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add(((orig_complex_graph['ligand'].pos if not args.resample_rdkit else orig_complex_graph['ligand'].pos[idx]) + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
start_time = time.time()
if not args.no_model:
if filtering_model is not None and not (
filtering_args.use_original_model_cache or filtering_args.transfer_weights):
filtering_data_list = [copy.deepcopy(filtering_complex_dict[orig_complex_graph.name[0]]) for _ in
range(N)]
else:
filtering_data_list = None
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
no_random=args.no_random,
ode=args.ode, visualization_list=visualization_list,
confidence_model=filtering_model,
filtering_data_list=filtering_data_list,
filtering_model_args=filtering_model_args,
asyncronous_noise_schedule=score_model_args.asyncronous_noise_schedule,
t_schedule=t_schedule,
batch_size=bs,
no_final_step_noise=args.no_final_step_noise, pivot=pivot,
temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot, args.temp_sampling_tor],
temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor],
temp_sigma_data=args.temp_sigma_data,
svgd_weight_log_0=args.svgd_weight_log_0,
svgd_weight_log_1=args.svgd_weight_log_1,
svgd_repulsive_weight_log_0=args.svgd_repulsive_weight_log_0,
svgd_repulsive_weight_log_1=args.svgd_repulsive_weight_log_1,
svgd_kernel_size_log_0=args.svgd_kernel_size_log_0,
svgd_kernel_size_log_1=args.svgd_kernel_size_log_1,
svgd_langevin_weight_log_0=args.svgd_langevin_weight_log_0,
svgd_langevin_weight_log_1=args.svgd_langevin_weight_log_1,
svgd_rot_log_rel_weight=args.svgd_rot_log_rel_weight,
svgd_tor_log_rel_weight=args.svgd_tor_log_rel_weight,
svgd_use_x0=args.svgd_use_x0)
if args.xtb:
print(len(data_list), confidence[:, 0].shape)
conf = confidence[:, 0].cpu().numpy()
idx = np.argmax(conf)
print(idx)
optimize_complex(data_list[idx])
run_times.append(time.time() - start_time)
if score_model_args.no_torsion:
orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())
filterHs = torch.not_equal(data_list[0]['ligand'].x[:, 0], 0).cpu().numpy()
if isinstance(orig_complex_graph['ligand'].orig_pos, list):
# Same pair with multiple binding positions
# print(f'Number of ground truth poses: {len(orig_complex_graph['ligand'].orig_pos)}')
if args.dataset == 'moad':
orig_ligand_pos = np.array([pos[filterHs] - orig_complex_graph.original_center.cpu().numpy() for pos in orig_complex_graph['ligand'].orig_pos[0]])
else:
orig_ligand_pos = np.array([pos[filterHs] - orig_complex_graph.original_center.cpu().numpy() for pos in [orig_complex_graph['ligand'].orig_pos[0]]])
else:
print('default path')
orig_ligand_pos = np.expand_dims(
orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(),
axis=0)
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in data_list])
mol = RemoveAllHs(orig_complex_graph.mol[0])
rmsds = []
for i in range(len(orig_ligand_pos)):
try:
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[i], [l for l in ligand_pos])
except Exception as e:
print("Using non corrected RMSD because of the error:", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos[i]) ** 2).sum(axis=2).mean(axis=1))
rmsds.append(rmsd)
rmsds = np.asarray(rmsds)
rmsd = np.min(rmsds, axis=0)
centroid_distance = np.min(np.linalg.norm(ligand_pos.mean(axis=1)[None, :] - orig_ligand_pos.mean(axis=1)[:, None], axis=2), axis=0)
if confidence is not None and isinstance(filtering_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
confidence = np.nan_to_num(confidence, nan=-1e-6)
re_order = np.argsort(confidence)[::-1]
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1)[re_order], ' centroid distance',
np.around(centroid_distance, 1)[re_order], ' confidences ', np.around(confidence, 4)[re_order])
confidences_list.append(confidence)
else:
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1), ' centroid distance',
np.around(centroid_distance, 1))
centroid_distances_list.append(centroid_distance)
self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
if args.save_complexes:
sampled_complexes[orig_complex_graph.name[0]] = data_list
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}_{(confidence)[batch_idx]:.1f}.pdb')
else:
for rank, batch_idx in enumerate(np.argsort(rmsd)):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}.pdb')
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
rmsds_list.append(rmsd)
success = 1
except Exception as e:
print("Failed on", orig_complex_graph["name"], e)
success -= 1
if bs > 1:
bs = bs // 2
if success != 1:
rmsds_list.append(np.zeros(args.samples_per_complex) + 10000)
if filtering_model_args is not None:
confidences_list.append(np.zeros(args.samples_per_complex) - 10000)
centroid_distances_list.append(np.zeros(args.samples_per_complex) + 10000)
min_self_distances_list.append(np.zeros(args.samples_per_complex) + 10000)
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
failures += 1
print('Performance without hydrogens included in the loss')
print(failures, "failures due to exceptions")
print(skipped, ' skipped because complex was not in filtering dataset')
if args.save_complexes:
print("Saving complexes.")
if args.complexes_save_path is not None:
with open(os.path.join(args.complexes_save_path, "ligands.pkl"), 'wb') as f:
pickle.dump(sampled_complexes, f)
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
if 'no_overlap_' == overlap:
without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
if without_rec_overlap.sum() == 0: continue
rmsds = np.array(rmsds_list)[without_rec_overlap]
min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
if args.filtering_model_dir is not None:
confidences = np.array(confidences_list)[without_rec_overlap]
else:
confidences = np.array(confidences_list)
names = np.array(names_list)[without_rec_overlap]
else:
rmsds = np.array(rmsds_list)
min_self_distances = np.array(min_self_distances_list)
centroid_distances = np.array(centroid_distances_list)
confidences = np.array(confidences_list)
names = np.array(names_list)
run_times = np.array(run_times)
np.save(f'{args.out_dir}/{overlap}min_self_distances.npy', min_self_distances)
np.save(f'{args.out_dir}/{overlap}rmsds.npy', rmsds)
np.save(f'{args.out_dir}/{overlap}centroid_distances.npy', centroid_distances)
np.save(f'{args.out_dir}/{overlap}confidences.npy', confidences)
np.save(f'{args.out_dir}/{overlap}run_times.npy', run_times)
np.save(f'{args.out_dir}/{overlap}complex_names.npy', np.array(names))
print(rmsds)
performance_metrics.update({
f'{overlap}run_times_std': run_times.std().__round__(2),
f'{overlap}run_times_mean': run_times.mean().__round__(2),
f'{overlap}mean_rmsd': rmsds.mean(),
f'{overlap}rmsds_below_2': (100 * (rmsds < 2).sum() / len(rmsds) / N),
f'{overlap}rmsds_below_5': (100 * (rmsds < 5).sum() / len(rmsds) / N),
f'{overlap}rmsds_percentile_25': np.percentile(rmsds, 25).round(2),
f'{overlap}rmsds_percentile_50': np.percentile(rmsds, 50).round(2),
f'{overlap}rmsds_percentile_75': np.percentile(rmsds, 75).round(2),
f'{overlap}min_rmsds_below_2': (100 * (np.min(rmsds, axis=1) < 2).sum() / len(rmsds)),
f'{overlap}min_rmsds_below_5': (100 * (np.min(rmsds, axis=1) < 5).sum() / len(rmsds)),
f'{overlap}mean_centroid': centroid_distances.mean().__round__(2),
f'{overlap}centroid_below_2': (100 * (centroid_distances < 2).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_below_5': (100 * (centroid_distances < 5).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_percentile_25': np.percentile(centroid_distances, 25).round(2),
f'{overlap}centroid_percentile_50': np.percentile(centroid_distances, 50).round(2),
f'{overlap}centroid_percentile_75': np.percentile(centroid_distances, 75).round(2),
})
if N >= 5:
top5_rmsds = np.min(rmsds[:, :5], axis=1)
top5_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_self_intersect_fraction': (
100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),
f'{overlap}top5_centroid_below_2': (
100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_below_5': (
100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
})
if N >= 10:
top10_rmsds = np.min(rmsds[:, :10], axis=1)
top10_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_self_intersect_fraction': (
100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),
f'{overlap}top10_centroid_below_2': (
100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_below_5': (
100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
})
if filtering_model is not None:
confidence_ordering = np.argsort(confidences, axis=1)[:, ::-1]
filtered_rmsds = rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
performance_metrics.update({
f'{overlap}filtered_self_intersect_fraction': (
100 * (filtered_min_self_distances < 0.4).sum() / len(filtered_min_self_distances)).__round__(
2),
f'{overlap}filtered_rmsds_below_2': (100 * (filtered_rmsds < 2).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_below_5': (100 * (filtered_rmsds < 5).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_percentile_25': np.percentile(filtered_rmsds, 25).round(2),
f'{overlap}filtered_rmsds_percentile_50': np.percentile(filtered_rmsds, 50).round(2),
f'{overlap}filtered_rmsds_percentile_75': np.percentile(filtered_rmsds, 75).round(2),
f'{overlap}filtered_centroid_below_2': (
100 * (filtered_centroid_distances < 2).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_below_5': (
100 * (filtered_centroid_distances < 5).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_percentile_25': np.percentile(filtered_centroid_distances, 25).round(2),
f'{overlap}filtered_centroid_percentile_50': np.percentile(filtered_centroid_distances, 50).round(2),
f'{overlap}filtered_centroid_percentile_75': np.percentile(filtered_centroid_distances, 75).round(2),
})
if N >= 5:
top5_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)
top5_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_filtered_rmsds_below_2': (
100 * (top5_filtered_rmsds < 2).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_5': (
100 * (top5_filtered_rmsds < 5).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_percentile_25': np.percentile(top5_filtered_rmsds, 25).round(2),
f'{overlap}top5_filtered_rmsds_percentile_50': np.percentile(top5_filtered_rmsds, 50).round(2),
f'{overlap}top5_filtered_rmsds_percentile_75': np.percentile(top5_filtered_rmsds, 75).round(2),
f'{overlap}top5_filtered_centroid_below_2': (100 * (top5_filtered_centroid_distances < 2).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_below_5': (100 * (top5_filtered_centroid_distances < 5).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_percentile_25': np.percentile(top5_filtered_centroid_distances,
25).round(2),
f'{overlap}top5_filtered_centroid_percentile_50': np.percentile(top5_filtered_centroid_distances,
50).round(2),
f'{overlap}top5_filtered_centroid_percentile_75': np.percentile(top5_filtered_centroid_distances,
75).round(2),
})
if N >= 10:
top10_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10],
axis=1)
top10_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_filtered_rmsds_below_2': (
100 * (top10_filtered_rmsds < 2).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_5': (
100 * (top10_filtered_rmsds < 5).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_percentile_25': np.percentile(top10_filtered_rmsds, 25).round(2),
f'{overlap}top10_filtered_rmsds_percentile_50': np.percentile(top10_filtered_rmsds, 50).round(2),
f'{overlap}top10_filtered_rmsds_percentile_75': np.percentile(top10_filtered_rmsds, 75).round(2),
f'{overlap}top10_filtered_centroid_below_2': (100 * (top10_filtered_centroid_distances < 2).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_below_5': (100 * (top10_filtered_centroid_distances < 5).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_percentile_25': np.percentile(top10_filtered_centroid_distances,
25).round(2),
f'{overlap}top10_filtered_centroid_percentile_50': np.percentile(top10_filtered_centroid_distances,
50).round(2),
f'{overlap}top10_filtered_centroid_percentile_75': np.percentile(top10_filtered_centroid_distances,
75).round(2),
})
reverse_confidence_ordering = np.argsort(confidences, axis=1)
reverse_filtered_rmsds = rmsds[np.arange(rmsds.shape[0])[:, None], reverse_confidence_ordering][:, 0]
reverse_filtered_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
reverse_filtered_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
performance_metrics.update({
f'{overlap}reversefiltered_self_intersect_fraction': (
100 * (reverse_filtered_min_self_distances < 0.4).sum() / len(
reverse_filtered_min_self_distances)).__round__(2),
f'{overlap}reversefiltered_rmsds_below_2': (
100 * (reverse_filtered_rmsds < 2).sum() / len(reverse_filtered_rmsds)).__round__(2),
f'{overlap}reversefiltered_rmsds_below_5': (
100 * (reverse_filtered_rmsds < 5).sum() / len(reverse_filtered_rmsds)).__round__(2),
f'{overlap}reversefiltered_rmsds_percentile_25': np.percentile(reverse_filtered_rmsds, 25).round(2),
f'{overlap}reversefiltered_rmsds_percentile_50': np.percentile(reverse_filtered_rmsds, 50).round(2),
f'{overlap}reversefiltered_rmsds_percentile_75': np.percentile(reverse_filtered_rmsds, 75).round(2),
f'{overlap}reversefiltered_centroid_below_2': (100 * (reverse_filtered_centroid_distances < 2).sum() / len(
reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}reversefiltered_centroid_below_5': (100 * (reverse_filtered_centroid_distances < 5).sum() / len(
reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}reversefiltered_centroid_percentile_25': np.percentile(reverse_filtered_centroid_distances,
25).round(2),
f'{overlap}reversefiltered_centroid_percentile_50': np.percentile(reverse_filtered_centroid_distances,
50).round(2),
f'{overlap}reversefiltered_centroid_percentile_75': np.percentile(reverse_filtered_centroid_distances,
75).round(2),
})
if N >= 5:
top5_reverse_filtered_rmsds = np.min(
rmsds[np.arange(rmsds.shape[0])[:, None], reverse_confidence_ordering][:, :5], axis=1)
top5_reverse_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_reverse_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_reversefiltered_rmsds_below_2': (
100 * (top5_reverse_filtered_rmsds < 2).sum() / len(top5_reverse_filtered_rmsds)).__round__(
2),
f'{overlap}top5_reversefiltered_rmsds_below_5': (
100 * (top5_reverse_filtered_rmsds < 5).sum() / len(top5_reverse_filtered_rmsds)).__round__(
2),
f'{overlap}top5_reversefiltered_rmsds_percentile_25': np.percentile(top5_reverse_filtered_rmsds,
25).round(2),
f'{overlap}top5_reversefiltered_rmsds_percentile_50': np.percentile(top5_reverse_filtered_rmsds,
50).round(2),
f'{overlap}top5_reversefiltered_rmsds_percentile_75': np.percentile(top5_reverse_filtered_rmsds,
75).round(2),
f'{overlap}top5_reversefiltered_centroid_below_2': (
100 * (top5_reverse_filtered_centroid_distances < 2).sum() / len(
top5_reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_reversefiltered_centroid_below_5': (
100 * (top5_reverse_filtered_centroid_distances < 5).sum() / len(
top5_reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_reversefiltered_centroid_percentile_25': np.percentile(
top5_reverse_filtered_centroid_distances, 25).round(2),
f'{overlap}top5_reversefiltered_centroid_percentile_50': np.percentile(
top5_reverse_filtered_centroid_distances, 50).round(2),
f'{overlap}top5_reversefiltered_centroid_percentile_75': np.percentile(
top5_reverse_filtered_centroid_distances, 75).round(2),
})
if N >= 10:
top10_reverse_filtered_rmsds = np.min(
rmsds[np.arange(rmsds.shape[0])[:, None], reverse_confidence_ordering][:, :10], axis=1)
top10_reverse_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_reverse_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_reversefiltered_rmsds_below_2': (100 * (top10_reverse_filtered_rmsds < 2).sum() / len(
top10_reverse_filtered_rmsds)).__round__(2),
f'{overlap}top10_reversefiltered_rmsds_below_5': (100 * (top10_reverse_filtered_rmsds < 5).sum() / len(
top10_reverse_filtered_rmsds)).__round__(2),
f'{overlap}top10_reversefiltered_rmsds_percentile_25': np.percentile(top10_reverse_filtered_rmsds,
25).round(2),
f'{overlap}top10_reversefiltered_rmsds_percentile_50': np.percentile(top10_reverse_filtered_rmsds,
50).round(2),
f'{overlap}top10_reversefiltered_rmsds_percentile_75': np.percentile(top10_reverse_filtered_rmsds,
75).round(2),
f'{overlap}top10_reversefiltered_centroid_below_2': (
100 * (top10_reverse_filtered_centroid_distances < 2).sum() / len(
top10_reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_reversefiltered_centroid_below_5': (
100 * (top10_reverse_filtered_centroid_distances < 5).sum() / len(
top10_reverse_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_reversefiltered_centroid_percentile_25': np.percentile(
top10_reverse_filtered_centroid_distances, 25).round(2),
f'{overlap}top10_reversefiltered_centroid_percentile_50': np.percentile(
top10_reverse_filtered_centroid_distances, 50).round(2),
f'{overlap}top10_reversefiltered_centroid_percentile_75': np.percentile(
top10_reverse_filtered_centroid_distances, 75).round(2),
})
for k in performance_metrics:
print(k, performance_metrics[k])
if args.wandb:
wandb.log(performance_metrics)
histogram_metrics_list = [('rmsd', rmsds[:, 0]),
('centroid_distance', centroid_distances[:, 0]),
('mean_rmsd', rmsds.mean(axis=1)),
('mean_centroid_distance', centroid_distances.mean(axis=1))]
if N >= 5:
histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))
if filtering_model is not None:
histogram_metrics_list.append(('reverse_filtered_rmsds', reverse_filtered_rmsds))
histogram_metrics_list.append(('reverse_filtered_centroid_distances', reverse_filtered_centroid_distances))
histogram_metrics_list.append(('filtered_rmsd', filtered_rmsds))
histogram_metrics_list.append(('filtered_centroid_distance', filtered_centroid_distances))
if N >= 5:
histogram_metrics_list.append(('top5_filtered_rmsds', top5_filtered_rmsds))
histogram_metrics_list.append(('top5_filtered_centroid_distances', top5_filtered_centroid_distances))
histogram_metrics_list.append(('top5_reverse_filtered_rmsds', top5_reverse_filtered_rmsds))
histogram_metrics_list.append(
('top5_reverse_filtered_centroid_distances', top5_reverse_filtered_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_filtered_rmsds', top10_filtered_rmsds))
histogram_metrics_list.append(('top10_filtered_centroid_distances', top10_filtered_centroid_distances))
histogram_metrics_list.append(('top10_reverse_filtered_rmsds', top10_reverse_filtered_rmsds))
histogram_metrics_list.append(
('top10_reverse_filtered_centroid_distances', top10_reverse_filtered_centroid_distances))
os.makedirs(f'.plotly_cache/{cache_name}', exist_ok=True)
images = []
for metric_name, metric in histogram_metrics_list:
d = {'EntropicBind': metric}
df = pd.DataFrame(data=d)
fig = px.ecdf(df, width=900, height=600, range_x=[0, 40])
fig.add_vline(x=2, annotation_text='2 A;', annotation_font_size=20, annotation_position="top right",
line_dash='dash', line_color='firebrick', annotation_font_color='firebrick')
fig.add_vline(x=5, annotation_text='5 A;', annotation_font_size=20, annotation_position="top right",
line_dash='dash', line_color='green', annotation_font_color='green')
fig.update_xaxes(title=f'{metric_name} in Angstrom', title_font={"size": 20}, tickfont={"size": 20})
fig.update_yaxes(title=f'Fraction of predictions with lower error', title_font={"size": 20},
tickfont={"size": 20})
fig.update_layout(autosize=False, margin={'l': 0, 'r': 0, 't': 0, 'b': 0}, plot_bgcolor='white',
paper_bgcolor='white', legend_title_text='Method', legend_title_font_size=17,
legend=dict(yanchor="bottom", y=0.1, xanchor="right", x=0.99, font=dict(size=17), ), )
fig.update_xaxes(showgrid=True, gridcolor='lightgrey')
fig.update_yaxes(showgrid=True, gridcolor='lightgrey')
fig.write_image(os.path.join(f'.plotly_cache/{cache_name}', f'{metric_name}.png'))
wandb.log({metric_name: wandb.Image(os.path.join(f'.plotly_cache/{cache_name}', f'{metric_name}.png'),
caption=f"{metric_name}")})
images.append(
wandb.Image(os.path.join(f'.plotly_cache/{cache_name}', f'{metric_name}.png'), caption=f"{metric_name}"))
wandb.log({'images': images})