-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathGCNLayer.py
143 lines (119 loc) · 4.84 KB
/
GCNLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
_LAYER_UIDS = {}
def uniform(shape, scale=0.05, name=None):
"""Uniform init."""
initial = tf.random_uniform(shape, minval=-scale, maxval=scale, dtype=tf.float32)
return tf.Variable(initial, name=name)
def zeros(shape, name=None):
"""All zeros."""
initial = tf.zeros(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
def ones(shape, name=None):
"""All ones."""
initial = tf.ones(shape, dtype=tf.float32)
return tf.Variable(initial, name=name)
def glorot(shape, name=None):
"""Glorot & Bengio (AISTATS 2010) init."""
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = tf.random_uniform(shape, minval=-init_range, maxval=init_range, dtype=tf.float32)
return tf.Variable(initial, name=name)
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name = name)
def bias_variable(shape, name):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial, name = name)
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def sparse_dropout(x, keep_prob, noise_shape):
"""Dropout for sparse tensors."""
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
def dot(x, y, sparse=False):
"""Wrapper for tf.matmul (sparse vs dense)."""
if sparse:
res = tf.sparse_tensor_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res
class Layer(object):
"""Base layer class. Defines basic API for all layer objects.
Implementation inspired by keras (http://keras.io).
# Properties
name: String, defines the variable scope of the layer.
logging: Boolean, switches Tensorflow histogram logging on/off
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
_log_vars(): Log all variables
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.sparse_inputs = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
if self.logging and not self.sparse_inputs:
tf.summary.histogram(self.name + '/inputs', inputs)
outputs = self._call(inputs)
if self.logging:
tf.summary.histogram(self.name + '/outputs', outputs)
return outputs
def _log_vars(self):
for var in self.vars:
tf.summary.histogram(self.name + '/vars/' + var, self.vars[var])
class GraphConvolution(Layer):
"""Graph convolution layer."""
def __init__(self, input_dim, output_dim, support, act=tf.nn.softplus, bias=False,
isnorm=False, isSparse = False, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.act = act
self.support = support#DAD
self.bias = bias
self.isnorm = isnorm
self.isSparse = isSparse
# helper variable for sparse dropout
with tf.variable_scope(self.name + '_vars'):
for i in range(1):
self.vars['weights_' + str(i)] = uniform([input_dim, output_dim],
name='weights_' + str(i))
if self.bias:
self.vars['bias'] = uniform([output_dim], name='bias')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
supports = list()
pre_sup = dot(x, self.vars['weights_' + str(0)], sparse = self.isSparse)
support = dot( self.support, pre_sup, sparse=False )
supports.append(support)
output = tf.add_n(supports)
# bias
if self.bias:
output += self.vars['bias']
if self.isnorm==True:
output = tf.nn.l2_normalize(output, dim=0)
return self.act(output)