-
Notifications
You must be signed in to change notification settings - Fork 2
/
base_line.py
39 lines (32 loc) · 928 Bytes
/
base_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import kaldi_io
import numpy as np
import torch
import argparse
from encoder import Encoder
from transformer import Transformer
import torch.nn as nn
import torch.optim as optim
from m5data import m5Dataset,m5DataLoader
TRAINED_MODEL = '/home/wanqiu/final_adi/model/model_ep30.pth'
print('loading data...')
test_data = m5Dataset('data/dev_shuffle/')
test_dataloader = m5DataLoader(test_data,batch_size=10)
print('loading model...')
model = torch.load(TRAINED_MODEL )
model.cuda()
correct = 0
total = 0
model.eval()
for step,data in enumerate(test_dataloader):
xs_pad, ilens, ys = data
xs_pad = xs_pad.cuda()
ilens = ilens.cuda()
ys = ys.cuda()
res = model(xs_pad,ilens)
_, pred = torch.max(res, 1)
correct += (pred == ys).sum().item()
total += ys.size(0)
if step % 100 == 99:
print ('step :',step)
accuracy = float(correct) / total
print('Acc = {:.5f}'.format(accuracy))