-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_with_img.py
332 lines (262 loc) · 11.3 KB
/
run_with_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import argparse
import torch
from llava.constants import (
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
process_images,
tokenizer_image_token,
get_model_name_from_path,
)
import requests
from PIL import Image
from io import BytesIO
import re
from torchvision.transforms import RandomResizedCrop, RandomRotation, RandomAffine, ColorJitter
from scipy.stats import entropy
import statistics
import torch.nn as nn
import logging
logging.basicConfig(level='ERROR')
import numpy as np
from pathlib import Path
import torch
import zlib
from tqdm import tqdm
import numpy as np
from datasets import load_dataset
from eval import *
import sys
# sys.path.insert(0, '../')
from metric_util import get_text_metric, get_img_metric, save_output, convert, get_meta_metrics
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="liuhaotian/llava-v1.5-7b")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--sep", type=str, default=",")
parser.add_argument("--temperature", type=float, default=0)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--num_gen_token", type=int, default=32)
parser.add_argument("--gpu_id",type=int,default=0)
parser.add_argument("--dataset", type=str, default='img_Flickr')
parser.add_argument("--output_dir", type=str, default="image_MIA")
parser.add_argument("--severity", type=int, default=6)
args = parser.parse_args()
return args
def load_image(image_file):
if isinstance(image_file, Image.Image):
return image_file.convert("RGB")
if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert("RGB")
else:
image = Image.open(image_file).convert("RGB")
return image
def load_images(image_files):
out = []
for image_file in image_files:
image = load_image(image_file)
out.append(image)
return out
def generate_text(model, image_processor, conv_mode, img, text, gpu_id, num_gen_token):
qs = text
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
if model.config.mm_use_im_start_end:
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
else:
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
if model.config.mm_use_im_start_end:
qs = image_token_se + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
images = load_images([img])
image_sizes = [x.size for x in images]
images_tensor = process_images(
images,
image_processor,
model.config
).to(model.device, dtype=torch.float16)
input_ids, prompt_chunks = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda(gpu_id)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images_tensor,
image_sizes=image_sizes,
do_sample=False,
max_new_tokens=num_gen_token,
use_cache=True,
)
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return output_text
def evaluate_data(model, image_processor, conv_mode, test_data, text, gpu_id, num_gen_token):
print(f"all data size: {len(test_data)}")
all_output = []
test_data = test_data
for ex in tqdm(test_data):
description = generate_text(model, image_processor, conv_mode, ex['image'], text, gpu_id, num_gen_token)
# description = ''
new_ex = inference(model, image_processor, conv_mode, ex['image'], text, description, ex, gpu_id)
all_output.append(new_ex)
return all_output
def load_conversation_template(model_name):
if "llama-2" in model_name.lower():
conv_mode = "llava_llama_2"
elif "mistral" in model_name.lower():
conv_mode = "mistral_instruct"
elif "v1.6-34b" in model_name.lower():
conv_mode = "chatml_direct"
elif "v1" in model_name.lower():
conv_mode = "llava_v1"
elif "mpt" in model_name.lower():
conv_mode = "mpt"
else:
conv_mode = "llava_v0"
return conv_mode
def inference(model, vis_processor, conv_mode, img_path, text, description, ex, gpu_id):
goal_parts = ['img','inst_desp','inst','desp']
all_pred = {}
if isinstance(img_path, Image.Image):
image = img_path.convert('RGB')
else:
image = Image.open(img_path).convert('RGB')
# Define the transformations
transform1 = RandomResizedCrop(size=(256, 256))
aug1 = transform1(image)
transform2 = RandomRotation(degrees=45)
aug2 = transform2(image)
transform3 = RandomAffine(degrees=30, translate=(0.1, 0.1), scale=(0.75, 1.25))
aug3 = transform3(image)
transform4 = ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
aug4 = transform4(image)
for part in goal_parts:
pred = {}
metrics = mod_infer(model, vis_processor, conv_mode, image, text, description, gpu_id, part)
metrics1 = mod_infer(model, vis_processor, conv_mode, aug1, text, description, gpu_id, part)
metrics2 = mod_infer(model, vis_processor, conv_mode, aug2, text, description, gpu_id, part)
metrics3 = mod_infer(model, vis_processor, conv_mode, aug3, text, description, gpu_id, part)
metrics4 = mod_infer(model, vis_processor, conv_mode, aug4, text, description, gpu_id, part)
aug1_prob = metrics1['log_probs']
aug2_prob = metrics2['log_probs']
aug3_prob = metrics3['log_probs']
aug4_prob = metrics4['log_probs']
ppl = metrics["ppl"]
all_prob = metrics["all_prob"]
p1_likelihood = metrics["loss"]
entropies = metrics["entropies"]
mod_entropy = metrics["modified_entropies"]
max_p = metrics["max_prob"]
org_prob = metrics["probabilities"]
log_probs = metrics["log_probs"]
gap_p = metrics["gap_prob"]
renyi_05 = metrics["renyi_05"]
renyi_2 = metrics["renyi_2"]
mod_renyi_05 = metrics["mod_renyi_05"]
mod_renyi_2 = metrics["mod_renyi_2"]
pred = get_img_metric(ppl, all_prob, p1_likelihood, entropies, mod_entropy, max_p, org_prob, gap_p, renyi_05, renyi_2, log_probs, aug1_prob, aug2_prob, aug3_prob, aug4_prob,mod_renyi_05, mod_renyi_2)
all_pred[part] = pred
ex["pred"] = all_pred
torch.cuda.empty_cache()
return ex
def mod_infer(model, image_processor, conv_mode, img, instruction, description, gpu_id, goal):
device='cuda:{}'.format(gpu_id)
qs = instruction
# qs = ''
image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
if IMAGE_PLACEHOLDER in qs:
if model.config.mm_use_im_start_end:
qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
else:
qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
else:
if model.config.mm_use_im_start_end:
qs = image_token_se + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], description)
prompt = conv.get_prompt()[:-4]
images = [img]
image_sizes = [x.size for x in images]
images_tensor = process_images(
images,
image_processor,
model.config
).to(model.device, dtype=torch.float16)
input_ids, prompt_chunks = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda(gpu_id)
with torch.no_grad():
outputs = model(
input_ids = input_ids,
images=images_tensor,
image_sizes=image_sizes
)
descp_encoding = tokenizer(description, return_tensors="pt", add_special_tokens = False).to(device).input_ids
logits = outputs.logits
goal_slice_dict = {
'img' : slice(len(prompt_chunks[0]),-len(prompt_chunks[-1])+1),
'inst_desp' : slice(-len(prompt_chunks[-1])+1,None),
'inst' : slice(-len(prompt_chunks[-1])+1,-descp_encoding.shape[1]),
'desp' : slice(-descp_encoding.shape[1],None)
}
img_loss_slice = logits[0, goal_slice_dict['img'].start-1:goal_slice_dict['img'].stop-1, :]
img_target_np = torch.nn.functional.softmax(img_loss_slice, dim=-1).cpu().numpy()
max_indices = np.argmax(img_target_np, axis=-1)
img_max_input_id = torch.from_numpy(max_indices).to(device)
tensor_a = torch.tensor(prompt_chunks[0]).to(device) if not isinstance(prompt_chunks[0], torch.Tensor) else prompt_chunks[0]
tensor_b = torch.tensor(prompt_chunks[-1][1:]).to(device) if not isinstance(prompt_chunks[-1][1:], torch.Tensor) else prompt_chunks[-1][1:]
mix_input_ids = torch.cat([tensor_a, img_max_input_id, tensor_b], dim=0)
target_slice = goal_slice_dict[goal]
logits_slice = logits[0,target_slice,:]
input_ids = mix_input_ids[target_slice]
probabilities = torch.nn.functional.softmax(logits_slice, dim=-1)
log_probabilities = torch.nn.functional.log_softmax(logits_slice, dim=-1)
return get_meta_metrics(input_ids, probabilities, log_probabilities)
# ========================================
# Model Initialization
# ========================================
if __name__ == '__main__':
args = parse_args()
num_gen_token = args.num_gen_token
dataset = args.dataset
#For corruption
severity = args.severity
# Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
args.model_path, args.model_base, model_name, gpu_id = args.gpu_id
)
conv_mode = load_conversation_template(model_name)
if args.conv_mode is not None and conv_mode != args.conv_mode:
print(
"[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}".format(
conv_mode, args.conv_mode, args.conv_mode
)
)
else:
args.conv_mode = conv_mode
dataset = load_dataset("JaineLi/VL-MIA-image", dataset, split='train')
data = convert_huggingface_data_to_list_dic(dataset)
output_dir = f"{args.output_dir}/{args.dataset}/gen_{num_gen_token}_tokens"
Path(output_dir).mkdir(parents=True, exist_ok=True)
logging.info('=======Initialization Finished=======')
text = 'Describe this image concisely.'
all_output = evaluate_data(model, image_processor, conv_mode, data, text, args.gpu_id, num_gen_token)
fig_fpr_tpr_img(all_output, output_dir)