-
Notifications
You must be signed in to change notification settings - Fork 6
/
eph_fdm.h
514 lines (406 loc) · 14.9 KB
/
eph_fdm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
* Authors of the extension Artur Tamm, Alfredo Caro, Alfredo Correa, Mattias Klintenberg
* e-mail: artur.tamm.work@gmail.com
*/
#ifndef EPH_FDM_H
#define EPH_FDM_H
#include "eph_spline.h"
#include "eph_linear.h"
#include <iostream>
#include <cassert>
#include <vector>
#include <stdexcept>
#include <cmath>
#include <cstring>
#include <numeric>
#include <mpi.h>
class EPH_FDM
{
public:
// default constructor to create a grid with one point
EPH_FDM() = default;
EPH_FDM(
size_t in_nx, size_t in_ny, size_t in_nz,
double in_x0, double in_x1,
double in_y0, double in_y1,
double in_z0, double in_z1,
double in_T_e, double in_C_e, double in_rho_e, double in_kappa_e) :
nx {in_nx},
ny {in_ny},
nz {in_nz}
{
// TODO: fix me
resize_vectors(nx, ny, nz);
set_box_dimensions(in_x0, in_x1, in_y0, in_y1, in_z0, in_z1);
set_constants(in_T_e, in_C_e, in_rho_e, in_kappa_e);
set_steps(1);
set_dt(1);
parameter_filename = "NULL";
}
EPH_FDM(const char *in_filename)
{
std::ifstream fd {in_filename}; assert(fd); // break code here
// 3 first lines are comments
char line[lineLength];
fd.getline(line, lineLength); assert(line[0] == '#');
fd.getline(line, lineLength); assert(line[0] == '#');
fd.getline(line, lineLength); assert(line[0] == '#');
// next line defines grid size
fd >> nx >> ny >> nz;
resize_vectors(nx, ny, nz);
fd >> steps;
// define box size
fd >> x0 >> x1
>> y0 >> y1
>> z0 >> z1;
set_box_dimensions(x0, x1, y0, y1, z0, z1);
fd >> parameter_filename;
// load temperature dependent parameters
if(parameter_filename != "NULL")
{
std::ifstream fd {parameter_filename}; assert(fd);
// 3 first lines are comments
char line[lineLength];
fd.getline(line, lineLength); assert(line[0] == '#');
fd.getline(line, lineLength); assert(line[0] == '#');
fd.getline(line, lineLength); assert(line[0] == '#');
size_t n; fd >> n;
double dT; fd >> dT;
std::vector<double> in_C_e_T(n);
std::vector<double> in_kappa_e_T(n);
for(size_t i = 0; i < n; ++i)
{
fd >> in_C_e_T[i] >> in_kappa_e_T[i]; // read data from file
}
C_e_T = Spline(dT, in_C_e_T);
kappa_e_T = Spline(dT, in_kappa_e_T);
// create Ee(Te) mapping
in_C_e_T[0] = 0.;
for(size_t i = 1; i < in_C_e_T.size(); ++i) {
in_C_e_T[i] = in_C_e_T[i - 1] + in_C_e_T[i] * dT;
}
E_e_T = EPH_Linear(dT, in_C_e_T.begin(), in_C_e_T.end());
}
// read grid values
for(size_t i = 0; i != ntotal; ++i) {
int lx, ly, lz;
fd >> lx >> ly >> lz;
size_t index = lx + ly * nx + lz * nx * ny;
fd >> T_e[index]
>> S_e[index]
>> rho_e[index]
>> C_e[index]
>> kappa_e[index]
>> flag[index]
>> T_dynamic_flag[index];
}
}
// set box dimensions in Ang
void set_box_dimensions(
double in_x0, double in_x1,
double in_y0, double in_y1,
double in_z0, double in_z1)
{
x0 = in_x0; x1 = in_x1;
y0 = in_y0; y1 = in_y1;
z0 = in_z0; z1 = in_z1;
assert(x0 < x1);
assert(y0 < y1);
assert(z0 < z1);
dx = (in_x1 - in_x0)/nx;
dy = (in_y1 - in_y0)/ny;
dz = (in_z1 - in_z0)/nz;
dV = dx*dy*dz;
}
// set constant values for as grid parameters
void set_constants(
double in_T_e, double in_C_e, double in_rho_e, double in_kappa_e)
{
std::fill(T_e.begin(), T_e.end(), in_T_e);
std::fill(rho_e.begin(), rho_e.end(), in_rho_e);
std::fill(C_e.begin(), C_e.end(), in_C_e);
std::fill(kappa_e.begin(), kappa_e.end(), in_kappa_e);
std::fill(flag.begin(), flag.end(), 1);
std::fill(T_dynamic_flag.begin(), T_dynamic_flag.end(), false);
}
void set_dt(double in_dt)
{
dt = in_dt;
}
void set_steps(size_t in_steps)
{
steps = in_steps;
}
void set_comm(MPI_Comm in_comm, int in_myID, int in_nrPS)
{
world = in_comm;
myID = in_myID;
nrPS = in_nrPS;
}
// add energy into a cell
void insert_energy(double x, double y, double z, double E)
{
unsigned int index = get_index(x, y, z);
double prescale = dV * dt;
// convert energy into power per area
dT_e[index] += E / prescale;
}
// get temperature of a cell
double get_T(double x, double y, double z) const
{
unsigned int index = get_index(x, y, z);
return T_e[index];
}
double get_T_total() const
{
double result {std::accumulate(T_e.begin(), T_e.end(), 0.)};
result /= ntotal; // this calculates the average temperature
return result;
}
void save_temperature(const char* in_filename, int in_n) const
{
char fn[512];
sprintf(fn, "%s_%06d", in_filename, in_n);
FILE *fd = fopen(fn, "w");
assert(fd != nullptr);
// this is needed for visit Point3D
fprintf(fd, "x y z Te\n");
for(int k = 0; k < nz; ++k) {
for(int j = 0; j < ny; ++j) {
for(int i = 0; i < nx; ++i) {
unsigned int index = i + j * nx + k * nx * ny;
double x = x0 + i * dx;
double y = y0 + j * dy;
double z = z0 + k * dz;
fprintf(fd, "%.6e %.6e %.6e %.6e\n", x, y, z, T_e[index]);
}
}
}
fclose(fd);
}
void save_state(const char* in_filename) const
{
FILE *fd = fopen(in_filename, "w");
assert(fd != nullptr);
// 3 first lines are comments
fprintf(fd, "# A comment\n");
fprintf(fd, "#\n");
fprintf(fd, "#\n");
// next line is grid size and min number of steps
fprintf(fd, "%ld %ld %ld %ld\n", nx, ny, nz, steps);
// next we have box size
fprintf(fd, "%.6e %.6e\n", x0, x1);
fprintf(fd, "%.6e %.6e\n", y0, y1);
fprintf(fd, "%.6e %.6e\n", z0, z1);
// filename for temperature dependent parameters
fprintf(fd, "%s\n", parameter_filename.c_str());
// finally we have grid values
for(int k = 0; k < nz; ++k)
{
for(int j = 0; j < ny; ++j)
{
for(int i = 0; i < nx; ++i)
{
unsigned int index = i + j * nx + k * nx * ny;
fprintf(fd, "%d %d %d %.6e %.6e %.6e %.6e %.6e %d %d\n",
i, j, k, T_e[index], S_e[index],
rho_e[index], C_e[index], kappa_e[index],
flag[index], T_dynamic_flag[index]);
}
}
}
fclose(fd);
}
void solve()
{
sync_before();
if(myID == 0) // solving is done only on task 0
{
// this is strongly inspired by fix_ttm
// check for stability
double inner_dt = dt / steps;
double dtdxdydz = inner_dt * (1.0/dx/dx + 1.0/dy/dy + 1.0/dz/dz);
// update temperature dependent parameters
for(size_t i = 0; i < ntotal; ++i)
{
if(T_dynamic_flag[i])
{
C_e[i] = C_e_T(T_e[i]);
kappa_e[i] = kappa_e_T(T_e[i]);
}
}
/* find smallest C_e and rho_e and largest kappa */
double c_min = C_e[0];
double rho_min = rho_e[0];
double kappa_max = kappa_e[0];
for(size_t i = 1; i < ntotal; ++i) {
if(flag[i] != CONSTANT_VALUE) {
if(C_e[i] < c_min) c_min = C_e[i];
if(rho_e[i] < rho_min) rho_min = rho_e[i];
if(kappa_e[i] > kappa_max) kappa_max = kappa_e[i];
}
}
double r = dtdxdydz / c_min / rho_min * kappa_max;
unsigned int new_steps = steps;
// This will become unstable if there are any large fluctuations
// during the solving process; calling this at every step is expensive
if(r > 0.4)
{
inner_dt = 0.4 * inner_dt / r; // get new stable timestep
new_steps = std::max(static_cast<unsigned int> (dt / inner_dt), 1u);
inner_dt = dt / new_steps;
}
for(int n = 0; n < new_steps; ++n)
{
std::fill(ddT_e.begin(), ddT_e.end(), 0.0);
for(unsigned int k = 0; k < nz; ++k) {
for(unsigned int j = 0; j < ny; ++j) {
for(unsigned int i = 0; i < nx; ++i) {
unsigned int q, p;
unsigned int r = i + j*nx + k*nx*ny;
if(flag[r] == ZERO_DERIVATIVE) continue;
// +- dx
if(i > 0) p = (i-1) + j*nx + k*nx*ny;
else p = (nx-1) + j*nx + k*nx*ny;
if(i < (nx - 1)) q = (i+1) + j*nx + k*nx*ny;
else q = j*nx + k*nx*ny;
if(flag[q] == ZERO_DERIVATIVE) q = r;
else if(flag[p] == ZERO_DERIVATIVE) p = r;
ddT_e[r] += (kappa_e[q]-kappa_e[p]) * (T_e[q] - T_e[p]) / dx / dx / 4.0;
ddT_e[r] += kappa_e[r] * ((T_e[q]+T_e[p]-2.0*T_e[r]) / dx / dx);
// +- dy
if(j > 0) p = i + (j-1)*nx + k*nx*ny;
else p = i + (ny-1)*nx + k*nx*ny;
if(j < (ny - 1)) q = i + (j+1)*nx + k*nx*ny;
else q = i + k*nx*ny;
if(flag[q] == ZERO_DERIVATIVE) q = r;
else if(flag[p] == ZERO_DERIVATIVE) p = r;
ddT_e[r] += (kappa_e[q]-kappa_e[p]) * (T_e[q] - T_e[p]) / dy / dy / 4.0;
ddT_e[r] += kappa_e[r] * ((T_e[q]+T_e[p]-2.0*T_e[r]) / dy / dy);
// +- dz
if(k > 0) p = i + j*nx + (k-1)*nx*ny;
else p = i + j*nx + (nz-1)*nx*ny;
if(k < (nz - 1)) q = i + j*nx + (k+1)*nx*ny;
else q = i + j*nx;
if(flag[q] == ZERO_DERIVATIVE) q = r;
else if(flag[p] == ZERO_DERIVATIVE) p = r;
ddT_e[r] += (kappa_e[q]-kappa_e[p]) * (T_e[q] - T_e[p]) / dz / dz / 4.0;
ddT_e[r] += kappa_e[r] * ((T_e[q]+T_e[p]-2.0*T_e[r]) / dz / dz);
}
}
}
/* TODO: there might be an issue with grid volume here */
// do the actual step
for(int i = 0; i < ntotal; i++) {
double prescaler = rho_e[i] * C_e[i];
assert(prescaler > 0);
switch(flag[i]) {
case DYNAMIC:
// workaround
if(T_dynamic_flag[i] == 1) { // this should do the trick
double E_e = E_e_T(T_e[i]);
E_e += (ddT_e[i] + dT_e[i] + S_e[i]) / rho_e[i] * inner_dt;
T_e[i] = E_e_T.reverse_lookup(E_e);
}
else {T_e[i] += (ddT_e[i] + dT_e[i] + S_e[i]) / prescaler * inner_dt;} // this works for constant Ce
break;
default:
break;
}
// energy conservation issues
/* Add a sanity check somewhere for this */
if(T_e[i] < 0.0)
{
T_e[i] = 0.0;
}
}
}
}
sync_after();
}
private:
static constexpr unsigned int lineLength = 1024;
size_t nx, ny, nz; // number of nodes in x,y,z
size_t ntotal; // total number of nodes
double x0, x1; // box dimensions in x
double y0, y1; // box dimensions in y
double z0, z1; // box dimensions in z
double dx, dy, dz;
double dV; // volume of the element
std::vector<double> T_e; // current electronic temperature grid
std::vector<double> dT_e; // source/sink term from atoms
std::vector<double> ddT_e; // grid to store temporary values (almost second derivative)
// temperature dependence will be added later
std::vector<double> C_e; // specific heat at each point
std::vector<double> rho_e; // electronic density at each point
std::vector<double> kappa_e; // electronic heat conduction
std::vector<double> S_e; // external sink and source term
/*
* -1 -> uninitialised
* 0 -> constant
* 1 -> dynamic
* 2 -> derivative 0
*/
// TODO: change into enum
enum : signed short {
CONSTANT_VALUE = 0,
DYNAMIC = 1,
ZERO_DERIVATIVE = 2
};
std::vector<signed short> flag; // node property
/*
* 0 -> no temperature dependent parameters (C_e kappa_e)
* 1 -> temperature dependent parameters
*/
// T_dynamic_flag
std::vector<unsigned short> T_dynamic_flag; // temperature dependence of properties
// filename for the file where temperature dependent properties are saved
std::string parameter_filename; // NULL is special value
EPH_Linear E_e_T; //
Spline C_e_T; // temperature dependent interpolation for C_e
Spline kappa_e_T; // tempearture dependent interpolation for kappa_e
size_t steps; // number of steps
double dt; // value of global timestep
MPI_Comm world; // communicator
int myID;
int nrPS;
void resize_vectors(size_t in_nx, size_t in_ny, size_t in_nz)
{
ntotal = in_nx * in_ny * in_nz;
T_e.resize(ntotal, 0);
dT_e.resize(ntotal, 0);
ddT_e.resize(ntotal, 0);
C_e.resize(ntotal, 0);
rho_e.resize(ntotal, 0);
kappa_e.resize(ntotal, 0);
S_e.resize(ntotal, 0);
flag.resize(ntotal, 1);
T_dynamic_flag.resize(ntotal, false);
}
void sync_before() // this is for MPI sync before solve is called
{
MPI_Allreduce(MPI_IN_PLACE, dT_e.data(), ntotal, MPI_DOUBLE, MPI_SUM, world);
}
void sync_after() // this is for MPI sync after solve is called
{
// zero arrays
std::fill(dT_e.begin(), dT_e.end(), 0.0);
// synchronize electronic temperature
MPI_Bcast(T_e.data(), ntotal, MPI_DOUBLE, 0, world);
}
// possible source of error if nx*ny*nz does not fit into int
size_t get_index(double x, double y, double z) const
{
int lx = std::floor((x-x0) / dx);
int px = std::floor( ((double) lx) / nx);
lx -= px * nx;
int ly = std::floor((y-y0) / dy);
int py = std::floor( ((double) ly) / ny);
ly -= py * ny;
int lz = std::floor((z-z0) / dz);
int pz = std::floor( ((double) lz) / nz);
lz -= pz * nz;
return lx + ly*nx + lz*nx*ny;
}
};
#endif