-
Notifications
You must be signed in to change notification settings - Fork 17
/
utils.py
265 lines (232 loc) · 10.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import numpy as np
import torch
from torch.optim import Adam
from tqdm import tqdm
import pickle
import logging
import time
def train(
model,
config,
train_loader,
valid_loader=None,
foldername="",
):
optimizer = Adam(model.parameters(), lr=config["lr"], weight_decay=1e-6)
is_lr_decay = config["is_lr_decay"]
if foldername != "":
output_path = foldername + "/model.pth"
logging.basicConfig(filename=foldername + '/train_model.log', level=logging.DEBUG)
if is_lr_decay:
p1 = int(0.75 * config["epochs"])
p2 = int(0.9 * config["epochs"])
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[p1, p2], gamma=0.1
)
valid_epoch_interval = config["valid_epoch_interval"]
best_valid_loss = 1e10
for epoch_no in range(config["epochs"]):
avg_loss = 0
model.train()
with tqdm(train_loader, mininterval=5.0, maxinterval=50.0) as it:
for batch_no, train_batch in enumerate(it, start=1):
optimizer.zero_grad()
loss = model(train_batch)
loss.backward()
avg_loss += loss.item()
optimizer.step()
it.set_postfix(
ordered_dict={
"avg_epoch_loss": avg_loss / batch_no,
"epoch": epoch_no,
},
refresh=False,
)
logging.info("avg_epoch_loss:" + str(avg_loss / batch_no) + ", epoch:" + str(epoch_no))
if is_lr_decay:
lr_scheduler.step()
if valid_loader is not None and (epoch_no + 1) % valid_epoch_interval == 0 and (epoch_no + 1) > config["epochs"] * 0.5:
model.eval()
avg_loss_valid = 0
with torch.no_grad():
with tqdm(valid_loader, mininterval=5.0, maxinterval=50.0) as it:
for batch_no, valid_batch in enumerate(it, start=1):
loss = model(valid_batch, is_train=0)
avg_loss_valid += loss.item()
it.set_postfix(
ordered_dict={
"valid_avg_epoch_loss": avg_loss_valid / batch_no,
"epoch": epoch_no,
},
refresh=False,
)
logging.info("valid_avg_epoch_loss"+str(avg_loss_valid / batch_no)+", epoch:"+str(epoch_no))
if best_valid_loss > avg_loss_valid:
best_valid_loss = avg_loss_valid
print(
"\n best loss is updated to ",
avg_loss_valid / batch_no,
"at",
epoch_no,
)
logging.info("best loss is updated to "+str(avg_loss_valid / batch_no)+" at "+str(epoch_no))
if foldername != "":
torch.save(model.state_dict(), foldername + "/tmp_model"+str(epoch_no)+".pth")
if foldername != "":
torch.save(model.state_dict(), output_path)
def quantile_loss(target, forecast, q: float, eval_points) -> float:
return 2 * torch.sum(
torch.abs((forecast - target) * eval_points * ((target <= forecast) * 1.0 - q))
)
def calc_denominator(target, eval_points):
return torch.sum(torch.abs(target * eval_points))
def calc_quantile_CRPS(target, forecast, eval_points, mean_scaler, scaler):
target = target * scaler + mean_scaler
forecast = forecast * scaler + mean_scaler
quantiles = np.arange(0.05, 1.0, 0.05)
denom = calc_denominator(target, eval_points)
CRPS = 0
for i in range(len(quantiles)):
q_pred = []
for j in range(len(forecast)):
q_pred.append(torch.quantile(forecast[j : j + 1], quantiles[i], dim=1))
q_pred = torch.cat(q_pred, 0)
q_loss = quantile_loss(target, q_pred, quantiles[i], eval_points)
CRPS += q_loss / denom
return CRPS.item() / len(quantiles)
def evaluate(model, test_loader, nsample=100, scaler=1, mean_scaler=0, foldername=""):
with torch.no_grad():
model.eval()
mse_total = 0
mae_total = 0
evalpoints_total = 0
all_target = []
all_observed_point = []
all_observed_time = []
all_evalpoint = []
all_generated_samples = []
with tqdm(test_loader, mininterval=5.0, maxinterval=50.0) as it:
for batch_no, test_batch in enumerate(it, start=1):
output = model.evaluate(test_batch, nsample)
samples, c_target, eval_points, observed_points, observed_time = output
samples = samples.permute(0, 1, 3, 2) # (B,nsample,L,K)
c_target = c_target.permute(0, 2, 1) # (B,L,K)
eval_points = eval_points.permute(0, 2, 1)
observed_points = observed_points.permute(0, 2, 1)
samples_median = samples.median(dim=1)
all_target.append(c_target)
all_evalpoint.append(eval_points)
all_observed_point.append(observed_points)
all_observed_time.append(observed_time)
all_generated_samples.append(samples)
mse_current = (
((samples_median.values - c_target) * eval_points) ** 2
) * (scaler ** 2)
mae_current = (
torch.abs((samples_median.values - c_target) * eval_points)
) * scaler
mse_total += mse_current.sum().item()
mae_total += mae_current.sum().item()
evalpoints_total += eval_points.sum().item()
it.set_postfix(
ordered_dict={
"rmse_total": np.sqrt(mse_total / evalpoints_total),
"mae_total": mae_total / evalpoints_total,
"batch_no": batch_no,
},
refresh=True,
)
logging.info("rmse_total={}".format(np.sqrt(mse_total / evalpoints_total)))
logging.info("mae_total={}".format(mae_total / evalpoints_total))
logging.info("batch_no={}".format(batch_no))
with open(
foldername + "/generated_outputs_nsample" + str(nsample) + ".pk", "wb"
) as f:
all_target = torch.cat(all_target, dim=0)
all_evalpoint = torch.cat(all_evalpoint, dim=0)
all_observed_point = torch.cat(all_observed_point, dim=0)
all_observed_time = torch.cat(all_observed_time, dim=0)
all_generated_samples = torch.cat(all_generated_samples, dim=0)
pickle.dump(
[
all_generated_samples,
all_target,
all_evalpoint,
all_observed_point,
all_observed_time,
scaler,
mean_scaler,
],
f,
)
CRPS = calc_quantile_CRPS(
all_target, all_generated_samples, all_evalpoint, mean_scaler, scaler
)
with open(
foldername + "/result_nsample" + str(nsample) + ".pk", "wb"
) as f:
pickle.dump(
[
np.sqrt(mse_total / evalpoints_total),
mae_total / evalpoints_total,
CRPS,
],
f,
)
print("RMSE:", np.sqrt(mse_total / evalpoints_total))
print("MAE:", mae_total / evalpoints_total)
print("CRPS:", CRPS)
logging.info("RMSE={}".format(np.sqrt(mse_total / evalpoints_total)))
logging.info("MAE={}".format(mae_total / evalpoints_total))
logging.info("CRPS={}".format(CRPS))
def get_randmask(observed_mask, min_miss_ratio=0., max_miss_ratio=1.):
rand_for_mask = torch.rand_like(observed_mask) * observed_mask
rand_for_mask = rand_for_mask.reshape(-1)
sample_ratio = np.random.rand()
sample_ratio = sample_ratio * (max_miss_ratio-min_miss_ratio) + min_miss_ratio
num_observed = observed_mask.sum().item()
num_masked = round(num_observed * sample_ratio)
rand_for_mask[rand_for_mask.topk(num_masked).indices] = -1
cond_mask = (rand_for_mask > 0).reshape(observed_mask.shape).float()
return cond_mask
def get_hist_mask(observed_mask, for_pattern_mask=None, target_strategy='hybrid'):
if for_pattern_mask is None:
for_pattern_mask = observed_mask
if target_strategy == "hybrid":
rand_mask = get_randmask(observed_mask)
cond_mask = observed_mask.clone()
mask_choice = np.random.rand()
if target_strategy == "hybrid" and mask_choice > 0.5:
cond_mask = rand_mask
else: # draw another sample for histmask (i-1 corresponds to another sample)
cond_mask = cond_mask * for_pattern_mask
return cond_mask
def get_block_mask(observed_mask, target_strategy='block'):
rand_sensor_mask = torch.rand_like(observed_mask)
randint = np.random.randint
sample_ratio = np.random.rand()
sample_ratio = sample_ratio * 0.15
mask = rand_sensor_mask < sample_ratio
min_seq = 12
max_seq = 24
for col in range(observed_mask.shape[1]):
idxs = np.flatnonzero(mask[:, col])
if not len(idxs):
continue
fault_len = min_seq
if max_seq > min_seq:
fault_len = fault_len + int(randint(max_seq - min_seq))
idxs_ext = np.concatenate([np.arange(i, i + fault_len) for i in idxs])
idxs = np.unique(idxs_ext)
idxs = np.clip(idxs, 0, observed_mask.shape[0] - 1)
mask[idxs, col] = True
rand_base_mask = torch.rand_like(observed_mask) < 0.05
reverse_mask = mask | rand_base_mask
block_mask = 1 - reverse_mask.to(torch.float32)
cond_mask = observed_mask.clone()
mask_choice = np.random.rand()
if target_strategy == "hybrid" and mask_choice > 0.7:
cond_mask = get_randmask(observed_mask, 0., 1.)
else:
cond_mask = block_mask * cond_mask
return cond_mask