-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdistributed_kmeans.py
273 lines (220 loc) · 9.96 KB
/
distributed_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# Copyright (c) 2017 LREN CHUV for Human Brain Project
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
See original repository: https://github.com/MRN-Code/dkmeans/blob/master/dkmeans_singleshot.py
Compute Single-Shot K-Means with LLoyd's Algorithm or Gradient Descent
Algorithm Flow -
1: On each site, initialize Random Centroids
2: On each site, compute a clustering with k-many clusters
[lloyd's algorithm]
3: On each site, compute a local mean for each cluster
4: On each site, recompute centroids as equal to local means
[gradient descent]
3: On each site, compute a local gradient for each cluster
4: On each site, update centroids via gradient descent
5: On each site,
if change in centroids below some epsilon, STOP, report STOPPED
else GOTO step 3
6: On each site, broadcast local centroids to aggregator
7: On the aggregator, compute merging of clusters according to
least merging error (e.g. smallest distance betweeen centroids)
8: Broadcast merged centroids to all sites
"""
import logging
from pandas.io import json
import argparse
import numpy as np
from mip_helper import io_helper, shapes, parameters, utils
from sklearn_to_pfa.sklearn_to_pfa import sklearn_to_pfa
from sklearn_to_pfa.featurizer import Featurizer, Standardize, OneHotEncoding
import dkmeans.local_computations as local
import dkmeans.remote_computations as remote
from sklearn.cluster import KMeans
# Configure logging
logging.basicConfig(level=logging.INFO)
# Hardcoded constants for single-shot Lloyd's algorithm, can be put into MODEL_PARAM_* envs if needed
OPTIMIZATION = 'lloyd'
EPSILON = 0.00001
LR = 0.01 # learning rate for gradient descent, not used for Lloyd version
DEFAULT_N_CLUSTERS = 8
# if `mean` and `std` are not available in metadata, normalize variables if DEFAULT_NORMALIZE is True, if False then
# keep them as they are
DEFAULT_NORMALIZE = True
@utils.catch_user_error
def compute():
"""Create PFA for kNN."""
# Read intermediate inputs from jobs
logging.info("Fetching intermediate data...")
inputs = io_helper.fetch_data()
indep_vars = inputs["data"]["independent"]
# Extract hyperparameters from ENV variables
k = parameters.get_param('n_clusters', int, DEFAULT_N_CLUSTERS)
# featurization
featurizer = _create_featurizer(indep_vars)
# convert variables into dataframe
X = io_helper.fetch_dataframe(variables=indep_vars)
X = utils.remove_nulls(X, errors='ignore')
X = featurizer.transform(X)
estimator = KMeans(n_clusters=k)
estimator.fit(X)
# Generate PFA for kmeans
types = [(var['name'], var['type']['name']) for var in indep_vars]
pfa = sklearn_to_pfa(estimator, types, featurizer.generate_pretty_pfa())
# Add centroids as metadata
pfa['metadata'] = {'centroids': json.dumps(estimator.cluster_centers_.tolist())}
# Save or update job_result
logging.info('Saving PFA to job_results table')
io_helper.save_results(json.dumps(pfa), shapes.Shapes.PFA)
logging.info("DONE")
@utils.catch_user_error
def intermediate_kmeans():
"""Calculate k-Means locally."""
# Read inputs
logging.info("Fetching data...")
inputs = io_helper.fetch_data()
indep_vars = inputs["data"]["independent"]
# Extract hyperparameters from ENV variables
k = parameters.get_param('n_clusters', int, DEFAULT_N_CLUSTERS)
# Load data into a Pandas dataframe
logging.info("Loading data...")
X = io_helper.fetch_dataframe(variables=indep_vars)
# Return variables info, but remove actual data points
results = {'indep_vars': []}
for var in indep_vars:
if var['type']['name'] in ('integer', 'real'):
new_var = {k: v for k, v in var.items() if k != 'series'}
mean, std = _get_moments(var)
new_var['mean'] = mean
new_var['std'] = std
else:
new_var = var
results['indep_vars'].append(new_var)
# Drop NaN values
X = utils.remove_nulls(X, errors='ignore')
if len(X) == 0:
logging.warning("All data are NULL, returning empty centroids.")
results['centroids'] = []
io_helper.save_results(json.dumps(results), shapes.Shapes.JSON)
return
# Generate results
logging.info("Generating results...")
# featurization
featurizer = _create_featurizer(indep_vars)
X = featurizer.transform(X)
m, n = X.shape
num_iter = 0
not_converged = True
# Run k-Means locally
# Have each site compute k initial clusters locally
local_centroids = local.initialize_own_centroids(X, k)
# Local Optimization Loop
while not_converged:
# Each local site computes its cluster
cluster_labels = local.compute_clustering(X, local_centroids)
if OPTIMIZATION == 'lloyd':
# Computes its local mean if doing lloyd, and updates centroids
local_means = local.compute_mean(X, cluster_labels, k)
local_centroids, previous_centroids = local.mean_step(local_means, local_centroids)
elif OPTIMIZATION == 'gradient':
# Computes the local gradient if doing GD, and takes a GD step
local_grad = local.compute_gradient(X, cluster_labels, local_centroids, LR)
local_centroids, previous_centroids = local.gradient_step(local_grad, local_centroids)
# Check local stopping conditions
not_converged, local_delta = local.check_stopping(local_centroids, previous_centroids, EPSILON)
num_iter += 1
logging.info("Single-Shot {} ; iter : {} delta : {}".format(OPTIMIZATION, num_iter, local_delta))
results['centroids'] = [lc.tolist() for lc in local_centroids]
logging.info("Results:\n{}".format(results))
io_helper.save_results(json.dumps(results), shapes.Shapes.JSON)
logging.info("DONE")
def aggregate_kmeans(job_ids):
"""Compute merging of clusters according to least merging error (e.g. smallest distance betweeen centroids)
:input job_ids: list of job_ids with intermediate results
"""
# Read intermediate inputs from jobs
logging.info("Fetching intermediate data...")
data = io_helper.load_intermediate_json_results(map(str, job_ids))
local_centroids = [np.array(x['centroids']) for x in data if x['centroids']]
logging.info('Local centroids:\n{}'.format(local_centroids))
indep_vars = data[0]['indep_vars']
# Aggregate clusters remotely
remote_centroids = remote.aggregate_clusters(local_centroids)
logging.info("Remote centroids:\n{}".format(remote_centroids))
# Create fake KMeans estimator and assign it our centroids
estimator = KMeans()
estimator.cluster_centers_ = np.array(remote_centroids)
# Generate PFA for kmeans and add centroids to metadata
featurizer = _create_featurizer(indep_vars)
types = [(var['name'], var['type']['name']) for var in indep_vars]
pfa = sklearn_to_pfa(estimator, types, featurizer.generate_pretty_pfa())
# Add serialized model as metadata
pfa['metadata'] = {'centroids': json.dumps(np.array(remote_centroids).tolist())}
# Save or update job_result
logging.info('Saving PFA to job_results table')
pfa = json.dumps(pfa)
io_helper.save_results(pfa, shapes.Shapes.PFA)
logging.info("DONE")
def _create_featurizer(indep_vars):
transforms = []
for var in indep_vars:
if var['type']['name'] in ('integer', 'real'):
mean, std = _get_moments(var)
tf = Standardize(var['name'], mean, std)
transforms.append(tf)
elif var["type"]["name"] in ['polynominal', 'binominal']:
transforms.append(OneHotEncoding(var['name'], var['type']['enumeration']))
return Featurizer(transforms)
def _get_moments(var):
# TODO: DRY with the same function in `sgd_regression.py`
s = [x for x in var.get('series', []) if x is not None]
if 'mean' in var:
mean = var['mean']
else:
if DEFAULT_NORMALIZE and len(s):
mean = np.mean(s)
else:
mean = 0.
logging.warning('Mean not available for variable {}, using default value {}.'.format(var['name'], mean))
if 'std' in var:
std = var['std']
else:
if DEFAULT_NORMALIZE and len(s):
std = np.std(s)
else:
std = 1.
logging.warning('Standard deviation not available for variable {}, using default value {}'.format(var['name'], std))
return mean, std
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('compute', choices=['compute'])
parser.add_argument('--mode', choices=['single', 'intermediate', 'aggregate'], default='single')
parser.add_argument('--job-ids', type=str, nargs="*", default=[])
args = parser.parse_args()
# > compute
if args.mode == 'single':
compute()
# > compute --mode intermediate
elif args.mode == 'intermediate':
intermediate_kmeans()
# > compute --mode aggregate --job-ids 12 13 14
elif args.mode == 'aggregate':
aggregate_kmeans(args.job_ids)