-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathSieve_from_field.py
226 lines (207 loc) · 12.2 KB
/
Sieve_from_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#Importing the stuff we need
import pandas as bamboo_bears
import numpy as np
from matplotlib import pyplot as plt
from LSDMapFigure.PlottingRaster import MapFigure
from LSDMapFigure.PlottingRaster import BaseRaster
from LSDPlottingTools import colours as lsdcolours
from LSDPlottingTools import init_plotting_DV
import LSDPlottingTools as LSDP
# the cumulative grainsize curve and calculate the D50/84
def grainsize_curve_from_sieving(name_csv, directory):
# Importing the data
df = bamboo_bears.read_csv(directory+name_csv, sep =",") #reading the file
data = np.array(df.values) # Converting to numpy array
data_out = data[:4]
# data_processing
power_third = float(1./3.)
#calculation of the missing Diameters
for i in range(data.shape[0]):
if(data[i,0] == -1):
data[i,0] = 1000*np.power((6*data[i,1]/(2650*np.pi)),(power_third)) # D = [6M/2650]1/3
if(data[i,0] < 80):
data_out[3,1] += data[i,1]
else:
data_out = np.insert(data_out,data_out.shape[0],data[i],axis = 0)
# Calculation of the cumulative curve
## sorting
data_out = data_out[data_out[:,0].argsort()]
## cumulation
data_cumul = data_out
for i in range(1,data_out.shape[0]):
data_cumul[i,1] += data_cumul[i-1,1]
## percentages
maximum = data_cumul[:,1].max()
data_cumul[:,1] = data_cumul[:,1]*100/maximum
data_cumul = np.insert(data_cumul,0,[0,0],axis = 0)
# determination of D50
## determining the closest values to D50
for i in range(data_cumul.shape[0]):
if(data_cumul[i,1]>=50):
index_50_plus = i
index_50_minus = i-1
break
## getting the line equation
m_fifty = (data_cumul[index_50_plus,1] - data_cumul[index_50_minus,1])/(data_cumul[index_50_plus,0] - data_cumul[index_50_minus,0])
b_fifty = data_cumul[index_50_plus,1] - m_fifty*data_cumul[index_50_plus,0]
d_fifty = (50 - b_fifty)/m_fifty
# determination of D84
## determining the closest values to D84
for i in range(data_cumul.shape[0]):
if(data_cumul[i,1]>=84):
index_84_plus = i
index_84_minus = i-1
break
## getting the line equation
m_eighty_four = (data_cumul[index_84_plus,1] - data_cumul[index_84_minus,1])/(data_cumul[index_84_plus,0] - data_cumul[index_84_minus,0])
b_eighty_four = data_cumul[index_84_plus,1] - m_eighty_four*data_cumul[index_84_plus,0]
d_eighty_four = (84 - b_eighty_four)/m_eighty_four
# Plotting the result
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(data_cumul[:,0],data_cumul[:,1],lw =1.2, color = "black", marker = "o", markersize = 4, aa = True)
ax.set_xlabel("Diameters in mm")
ax.set_xlim(0,data_cumul[:,0].max())
ax.set_ylabel("Percentage Mass finer")
ax.set_ylim(0,100)
ax.annotate('D50: ' + str(d_fifty), xy=(data_cumul[:,0].max() - 20,90))
ax.annotate('D84: ' + str(d_eighty_four), xy=(data_cumul[:,0].max() - 20,85))
plt.savefig(directory+name_csv[:-3]+"png",dpi = 300)
plt.clf()
return d_fifty, d_eighty_four
#
# Compile and sort the data and create a synthesis figure per river
def compile_several_d(tab_def,names, Directory):
###### sorting by river
tempTable_number =[]
tempTable_D50 = []
tempTable_D84 =[]
for i in range(len(tab_def)):
if i == 0:
tempTable_number.append(tab_def[i][0])
tempTable_D50.append(tab_def[i][1])
tempTable_D84.append(tab_def[i][2])
else:
if(tab_def[i][3] == tab_def[i-1][3] and i != len(tab_def)-1):
tempTable_number.append(tab_def[i][0])
tempTable_D50.append(tab_def[i][1])
tempTable_D84.append(tab_def[i][2])
else:
####plotting when the River change
if(i == len(tab_def)-1): # to add the last data
tempTable_number.append(tab_def[i][0])
tempTable_D50.append(tab_def[i][1])
tempTable_D84.append(tab_def[i][2])
#conveting to numpy because it is easier to use
ploti0 = np.array(tempTable_number)
ploti1 = np.array(tempTable_D50)
ploti2 = np.array(tempTable_D84)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(ploti0,ploti1,lw =1.2, color = "black", marker = "o", markersize = 4, aa = True, label = "D50")
ax.plot(ploti0,ploti2,lw =1.2, color = "red", marker = "s", markersize = 4, aa = True, label = "D84")
ax.set_xlabel("Sieves")
ax.set_title(tab_def[i-1][3])
ax.set_ylabel("Percentage Mass finer")
ax.set_ylim(0,100)
plt.savefig(Directory+"Sieving_compiled_"+tab_def[i-1][3]+".png",dpi = 300)
plt.clf()
# going to the next river
tempTable_number =[]
tempTable_D50 = []
tempTable_D84 =[]
tempTable_number.append(tab_def[i][0])
tempTable_D50.append(tab_def[i][1])
tempTable_D84.append(tab_def[i][2])
plt.clf()
# Function to load parametersfrom the general file
def load_general_sieving_file(Directory, fname):
df = bamboo_bears.read_csv(Directory + fname, sep =",")
return df
# Create a new csv file with the D50/84 added in case you want it for later
def print_new_csv_with_D(Directory,dataf,dfi,deig):
dataf["D50"] = bamboo_bears.Series(dfi, index = dataf.index)
dataf["D84"] = bamboo_bears.Series(deig, index = dataf.index)
indexator = 0
tempo = []
for i in range(dataf.river.values.shape[0]):
if (i == 0):
tempo.append(indexator)
else:
if(dataf.river.values[i] == dataf.river.values[i-1]):
tempo.append(indexator)
else:
indexator +=1
tempo.append(indexator)
dataf["river_ID"] = bamboo_bears.Series(tempo, index = dataf.index)
dataf.to_csv(Directory+"sieving_processed.csv", index = False)
return "sieving_processed.csv"
if __name__ == '__main__':
print("I will process your data from field sieving")
################ Parameters to changes ###########
Directory = "C:/Data/Field_2017/Grainsize/Sieveing/" # Path to your sieving files
gname = "sieving.csv" # Name of the general sieving file
maps = True # Do you want to create a map with the grainsize plotted?
D_map = "C:/Data/ORDI_BORIS_ROUMANIE/Romania/" # path to the main raster
N_map = "Romania_study2.bil" #name of the raster
HS_name = "Romania_study_hs2.bil" # ' name of the hs raster'
river_file = "Knickpoint_MChiSegmented.csv" # name of the river network csv file, any file that contain at least the latitude longitude of the river points
##################### Do not change the following if you don't know why
file_info = load_general_sieving_file(Directory, gname)
tab_d = []
pdf = []
pde = []
file_info.csv_file_name.values
print("Let me load and preprocess your "+str(len(file_info.csv_file_name.values))+ " files")
for i in range(len(file_info.csv_file_name.values)):
print("File "+ str(i+1))
tdf,tde = grainsize_curve_from_sieving(file_info.csv_file_name.values[i],Directory)
tab_d.append([i+1,tdf,tde,file_info.river.values[i]])
pdf.append(tdf)
pde.append(tde)
print("Your D50 is: %s and your D84 is %s" %(tdf,tde))
print("Done plus figure created in "+Directory+file_info.csv_file_name.values[i][:-3]+"png")
print("I am now compiling the data and creatng the D50/84 evolution figure")
compile_several_d(tab_d,file_info.csv_file_name.values,Directory)
print("Your compiled filed is named "+ Directory+ "Sieving_compiled.png")
################ printing the maps
if(maps):
print("I will now create a map with the sieving data sized by D50")
file_info = print_new_csv_with_D(Directory,file_info,pdf,pde)
thisPointData = LSDP.LSDMap_PointData(Directory + file_info) # Load the point file #1, add a similar line with different name if you have more than one point file.
riverPointData = LSDP.LSDMap_PointData(D_map + river_file)
plt.clf() # Ignore this line
MF = MapFigure(N_map, D_map,coord_type="UTM_km") # load the background raster
MF.add_drape_image(HS_name,D_map, # Calling the function will add a drapped raster on the top of the background one
colourmap = "gray", # colormap used for this raster, see http://matplotlib.org/users/colormaps.html for examples, put _r at the end of a colormap to get the reversed version
alpha=0.5, # transparency of this specific layer, 0 for fully transparent (why not) and 1 for fully opaque
show_colourbar = False, # Well, this one is explicit I think
colorbarlabel = "Colourbar") # Name of your Colourbar, it might bug though
MF.add_point_data( riverPointData, # this function plot the requested point file using the lat/long column in the csv file
column_for_plotting = "None", # Column used to color the data
this_colourmap = "RdBu_r", # Colormap used, see http://matplotlib.org/users/colormaps.html for examples, put _r at the end of a colormap to get the reversed version
colorbarlabel = "River", # Label
scale_points = False, # All the point will have the same size if False
column_for_scaling = "None", # If scale point True, you can scale the size of your points using one of the columns
scaled_data_in_log = False, # If scale point True, you can log the scaling
max_point_size = 12, # max size if scale point True again
min_point_size = 1, # You should be able to guess that one now
coulor_log = False, # do you want a log scale for your colorbar ?
coulor_manual_scale = [], #Do you want to manually limit the scale of your colorbar? if not let is false
manual_size = 0.25, # If none of above is choosen but you want to put another value than 0.5 to scale your point
alpha = 0.2, # transparency of this specific layer, 0 for fully transparent (why not) and 1 for fully opaque
minimum_log_scale_cut_off = -10) # you probably won't need this
MF.add_point_data( thisPointData, # this function plot the requested point file using the lat/long column in the csv file
column_for_plotting = "river_ID", # Column used to color the data
this_colourmap = "RdBu_r", # Colormap used, see http://matplotlib.org/users/colormaps.html for examples, put _r at the end of a colormap to get the reversed version
colorbarlabel = "River", # Label
scale_points = True, # All the point will have the same size if False
column_for_scaling = "D50", # If scale point True, you can scale the size of your points using one of the columns
scaled_data_in_log = False, # If scale point True, you can log the scaling
max_point_size = 70, # max size if scale point True again
min_point_size = 15, # You should be able to guess that one now
coulor_log = False, # do you want a log scale for your colorbar ?
coulor_manual_scale = [], #Do you want to manually limit the scale of your colorbar? if not let is false
manual_size = 0.5, # If none of above is choosen but you want to put another value than 0.5 to scale your point
alpha = 1, # transparency of this specific layer, 0 for fully transparent (why not) and 1 for fully opaque
minimum_log_scale_cut_off = -10) # you probably won't need this
ax_style = "Normal" # Ignore this
MF.save_fig(fig_width_inches = 10, FigFileName = Directory + "Map_Sieve.png", axis_style = ax_style, Fig_dpi = 500) # Save the figure