Abstract:这个部分用于使用传统图像特征的方法,基于滑动窗口的的目标检测
模块,包含Config模块,FeatureExtractor模块,和Classifier模块,下面将简单
介绍使用方法和各模块的功能。
python main.py --action train
python main.py --action test
Config |
FeatureExtractor |
Classifier |
定义project的各种参量,包括使用的feature类型,project_id,路径(训练集/ |
|
|
测试集/模型)以及各种feature提取的参数 |
定义特征提取函数,该模块包含通用的 |
|
图像处理函数,以及特定的feature提取函数 |
定义分类器的训练以及预测函数 |
|
Param |
Definition |
DES_TYPE |
The feature extraction type |
CLF_TYPE |
The classifier model(eg.SVM,MLP) |
project_id |
Self_defined project name |
THRESHOLD |
The threshold when applying nms() |
DOWNSCALE |
The downscale when applying pyramid_gaussian() |
MIN_WDW_SIZE |
The min size of windows detected |
STEP_SIZE |
The slide step when sliding across the image |
FeatureExtractor
Function |
Definition |
resize_crop_by_short() |
Resize and crop the input image, output image shape(short_len, short_len) |
resize_by_short() |
Resize the image |
image_preprocess_size() |
Resize and crop all training images |
sliding_window() |
Slide window at a fix window size |
overlapping_area() |
Calculate the overlap area of two detections |
nms() |
Apply NMS |
process_image() |
Extract features from input image |
extract_features() |
Extract features of all input images |
Function |
Definition |
load_data() |
Load all features of images |
train_classifier() |
Train the model |
load_model() |
Load the model |
predict() |
Predict the class or score of the input image |
test_classifier() |
Test classifier on the test images |