-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutil.py
102 lines (77 loc) · 2.68 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from __future__ import print_function
import torch
import numpy as np
def visual_sim(a,pdf_name):
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
plt.switch_backend('agg')
# plt.rcParams['figure.figsize'] = (20, 20)
plt.axis('square')
# =================
def make_square_axes(ax):
"""Make an axes square in screen units.
Should be called after plotting.
"""
ax.set_aspect(1 / ax.get_data_ratio())
# ===================
fig = plt.figure()
# fig.subplots_adjust(wspace=0.2, hspace=0)
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
ax = fig.add_subplot(111)
vmin = 0
vmax = 100
pt = a
# im = ax.imshow(pt.T, cmap=plt.cm.rainbow, vmin=vmin, vmax=vmax)
im = ax.imshow(pt.T, cmap=plt.cm.rainbow)
make_square_axes(ax)
fig.subplots_adjust(right=0.8)
# cbar_ax = fig.add_axes([0.81, 0.328, 0.01, 0.334])
cbar_ax = fig.add_axes([0.79, 0.15, 0.05, 0.7])
cb = fig.colorbar(im, cax=cbar_ax)
# plt.axis('off')
# plt.subplots_adjust(wspace=0.02, hspace=0.02)
# plt.show()
plt.savefig('./contrast_fig/{}.pdf'.format(pdf_name), format='pdf', transparent=True, dpi=300, pad_inches=0,bbox_inches='tight')
plt.close()
return
def adjust_learning_rate(epoch, opt, optimizer):
"""Sets the learning rate to the initial LR decayed by 0.2 every steep step"""
steps = np.sum(epoch > np.asarray(opt.lr_decay_epochs))
if steps > 0:
new_lr = opt.learning_rate * (opt.lr_decay_rate ** steps)
for param_group in optimizer.param_groups:
param_group['lr'] = new_lr
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
meter = AverageMeter()