-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cvae.py
383 lines (351 loc) · 15 KB
/
train_cvae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
from transformers import (
TrainerCallback,
AutoTokenizer,
AutoModel,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
get_polynomial_decay_schedule_with_warmup,
GenerationConfig,
)
import tqdm
from transformers.trainer_callback import PrinterCallback
import os
import sys
import torch
import torch.nn as nn
import bitsandbytes as bnb
from datasets import load_dataset, Dataset
import transformers
import random
from functools import partial
import utils
import modeling
import prompt
import middleware
import wandb
import schema
import gen_cvae
# 4. start training
class CustomCallback(TrainerCallback):
def __init__(self, trainer, tokenizer,decoder_tokenizer, prompter, args,**kwargs) -> None:
super().__init__()
self.args = args
self.trainer = trainer
self.tokenizer = tokenizer
self.decoder_tokenizer = decoder_tokenizer
self.prompter = prompter
self.logger = utils.set_file_logger('transformers.trainer', trainer.args.output_dir)
self.epoch = 0
if args.use_attr: # for gen_attr in training; final gen will not use it
modeling.load_scorer(self.args, use_extern_latent=False)
for attr in self.args.attrs:
self.args.scorer_list[attr]['latent'] = self.trainer.model.latent_cls[attr]
self.gen_args = utils.HyperParams().from_dict({
**args.__dict__,
"debug": False,
"algorithm": "ODE",
"attr_output_path": f'{args.output_path}/personalized'
})
os.makedirs(f'{args.output_path}/personalized', exist_ok=True)
def on_epoch_begin(self, args, state, control, **kwargs):
if (self.epoch) % 2 + 1 == 1:
self.trainer._save_checkpoint(self.trainer.model, trial=None, metrics=None)
self.epoch += 1
def _frange_cycle_zero_linear(
self,
step,
period, # steps per loop
beta_min = 0.,
beta_max = 1.,
ratio_min=0.2,
ratio_max=0.2
):
if step % period < ratio_min * period:
return beta_min
elif step % period >= ratio_max * period:
return beta_max
else:
k = (beta_max - beta_min) / (( 1 - ratio_max - ratio_min ) * period)
return k * (step % period - ratio_min * period) + beta_min
def on_step_begin(self, args, state, control, **kwargs):
# len_data / total_batch = num_steps
self.trainer.model.beta = self._frange_cycle_zero_linear(self.trainer.state.global_step, 40)
# save model的时候调用
def on_save(self, args, state, control, model, **kwargs):
pass
# TODO: how to parallel
def test(self, model, state):
with utils.evaluating(model), torch.no_grad():
data, _ = modeling.load_data(schema.dev_cvae_data_path, mode='gen')
if self.args.use_context:
preprocess = self.prompter.preprocess_gen_context
else:
preprocess = self.prompter.preprocess_gen
data = data.map(preprocess)
dataloader = torch.utils.data.DataLoader(
data,
batch_size=len(data),
collate_fn= lambda data: dict((key, [ torch.tensor(d[key]) if 'ids' in key else d[key] for d in data]) for key in data[0]),
shuffle=False,
)
if self.args.use_attr:
gen_cvae.gen_attr2(model, self.tokenizer, self.decoder_tokenizer, dataloader, self.gen_args , self.logger, state.global_step)
else:
gen_cvae.gen(model, self.tokenizer, self.decoder_tokenizer, dataloader, self.gen_args , self.logger, state.global_step)
def on_log(self, args, state, control, logs, **kwargs):
train_metrics = {
**self.args.extra,
**logs,
}
self.logger.info(train_metrics)
wandb.log({f'train/{n}':v for n,v in train_metrics.items()})
def train_cvae(
args,
):
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
args.gradient_accumulation_steps = args.total_batch // args.micro_batch
if ddp:
args.gradient_accumulation_steps = args.gradient_accumulation_steps // world_size
logger = utils.set_file_logger(__name__, args.output_path, use_console=True)
args.ip = utils.extract_ip()
args.time= utils.get_time()
logger.warning(f'>>> output in {args.output_path}')
logger.info(f'>>> using {args}')
# 0. prepare data-processing tool
tokenizer, decoder_tokenizer = modeling.load_tokenizer(args)
logger.info(f'>>> tokenizer {tokenizer.sep_token, tokenizer.cls_token, tokenizer.pad_token}')
logger.info(f'>>> decoder_tokenizer {decoder_tokenizer.bos_token_id, decoder_tokenizer.eos_token_id, decoder_tokenizer.pad_token_id}')
prompter = prompt.attribute_dialogue(tokenizer, decoder_tokenizer, args.cutoff, decoder_add_eos=True, decoder_add_bos=True)
train_data, examples = modeling.load_data(args, mode='train-cvae')
if args.use_context:
preprocess = prompter.preprocess_train_context
else:
preprocess = prompter.preprocess_train
## 1.1 check example
examples = examples.map(preprocess)
for example in examples:
logger.info(f'>>> prior_input_text:\n { tokenizer.decode(example["prior_input_ids"]) }')
logger.info(f'>>> posterior_input_text:\n { tokenizer.decode(example["posterior_input_ids"]) }')
logger.info(f'>>> tokenize input: { example["posterior_input_ids"][:10] }...{ example["posterior_input_ids"][-10:]}')
logger.info(f'>>> labels: { decoder_tokenizer.decode([ 0 if l==-100 else l for l in example["labels"]])}')
logger.info(f'>>> tokenize labels: { example["decoder_input_ids"] }')
## 1.2 process data
num_proc = (os.cpu_count())
train_data = train_data.shuffle().map(preprocess, num_proc=num_proc)
# 2. prepare model
logger.warning((
f">>> load model from {args.encoder_path}\n"
f">>> load model from {args.decoder_path} "
))
model = modeling.load_model(args, decoder_tokenizer)
logger.warning((
f'>>> encoder memory(G): {utils.get_transformers_memory(model.prior_encoder.bert if args.share_encoder else model.prior_encoder)} \n'
f'>>> decoder memory(G): {utils.get_transformers_memory(model.decoder)}\n'
f'>>> parameter(B): {utils.get_trainable_numel(model)}'
))
# 3. prepare trainer
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=None,
args=transformers.TrainingArguments(
per_device_train_batch_size=args.micro_batch,
gradient_accumulation_steps=args.total_batch//args.micro_batch,
warmup_ratio=args.warmup_ratio,
num_train_epochs=args.num_epoch,
learning_rate=args.learning_rate,
fp16=True,
logging_steps=args.log_steps,
logging_first_step=True, # convenient
evaluation_strategy="no",
save_strategy="epoch",
save_total_limit=1, # TODO:
# eval_steps=args.eval_steps if args.eval_data_path else None,
# save_steps=args.save_steps,
output_dir=args.output_path,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.use_wandb else [],
ignore_data_skip=args.ignore_data_skip,
),
data_collator=prompter.data_collator(),
)
if not args.use_wandb:
wandb.init(mode='disabled')
trainer.remove_callback(PrinterCallback)
trainer.add_callback(CustomCallback(trainer,tokenizer,decoder_tokenizer,prompter,args))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# save args
utils.to_json(args.__dict__, f'{args.output_path}/train_args.json')
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
if args.use_wandb:
wandb.config.update(args, allow_val_change=True)
logger.info({'wandb-url': wandb.run.get_url()})
# TODO: unwrap the `_orig_mod`
torch.save(model.state_dict(),f'{args.output_path}/checkpoint-final')
def attr_collate(features):
# 把里边的batch取出来,否则送入模型是 [1,batch,xx]
batch = {}
# 全部变成tensor即可
features = features[0]
for k, v in features.items():
if k not in ("attr") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack(features[k])
else:
batch[k] = torch.tensor(features[k])
batch['attr'] = features['attr']
return batch
def train_cvae_attr(
args,
):
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
args.gradient_accumulation_steps = args.total_batch // args.micro_batch
if ddp:
args.gradient_accumulation_steps = args.gradient_accumulation_steps // world_size
logger = utils.set_file_logger(__name__, args.output_path, use_console=True)
args.ip = utils.extract_ip()
args.time= utils.get_time()
logger.info(f'>>> output in {args.output_path}')
logger.info(f'>>> using {args}')
# 0. prepare data-processing tool
tokenizer, decoder_tokenizer = modeling.load_tokenizer(args)
logger.info(f'>>> tokenizer {tokenizer.sep_token, tokenizer.cls_token, tokenizer.pad_token}')
logger.info(f'>>> decoder_tokenizer {decoder_tokenizer.bos_token_id, decoder_tokenizer.eos_token_id, decoder_tokenizer.pad_token_id}')
prompter = prompt.attribute_dialogue(tokenizer, decoder_tokenizer, args.cutoff, decoder_add_eos=True, decoder_add_bos=True)
if args.use_context:
preprocess = prompter.preprocess_train_context
else:
preprocess = prompter.preprocess_train
train_data = {'attr':[]}
for attr in args.attrs:
data, examples = modeling.load_attr_data(attr, mode='train-cvae')
## 1.1 check example
examples = examples.map(preprocess)
for example in examples:
logger.info(f'>>> prior_input_text:\n { tokenizer.decode(example["prior_input_ids"]) }')
logger.info(f'>>> posterior_input_text:\n { tokenizer.decode(example["posterior_input_ids"]) }')
logger.info(f'>>> tokenize input: { example["posterior_input_ids"][:10] }...{ example["posterior_input_ids"][-10:]}')
logger.info(f'>>> labels: { decoder_tokenizer.decode([ 0 if l==-100 else l for l in example["labels"]])}')
logger.info(f'>>> tokenize labels: { example["decoder_input_ids"] }')
## 1.3 append to set
data = data.map(preprocess, num_proc=(os.cpu_count())).shuffle() # id之间要打乱
data = data.remove_columns(['input','output','personas'])
dataloader = torch.utils.data.DataLoader(
data,
batch_size=args.micro_batch,
collate_fn = prompter.data_collator(),
# pin_memory=True,
# num_workers=4,
)
for cnt in iter(dataloader):
for k,v in cnt.items():
if k not in train_data:
train_data[k] = []
train_data[k].append(cnt[k])
train_data['attr'].append(attr)
train_data = Dataset.from_dict(train_data)
columns = list(train_data.features.keys())
train_data.set_format(columns=columns+['attr'])
# 2. prepare model
logger.info((
f">>> load model from {args.encoder_path}\n"
f">>> load model from {args.decoder_path} "
))
if 'llama' in args.decoder_path:
model = modeling.load_model2(args,decoder_tokenizer)
else:
model = modeling.load_model(args, decoder_tokenizer)
logger.info((
f'>>> encoder memory(G): {utils.get_transformers_memory(model.prior_encoder.bert if args.share_encoder else model.prior_encoder)} \n'
f'>>> decoder memory(G): {utils.get_transformers_memory(model.decoder)}\n'
f'>>> parameter(B): {utils.get_trainable_numel(model)}'
))
# save args 注意放后面会存scorer-list, 不是 JSON serializable 的
utils.to_json(args.__dict__, f'{args.output_path}/train_args.json')
# 3. prepare trainer
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=None,
args=transformers.TrainingArguments(
# per_device_train_batch_size=args.micro_batch,
per_device_train_batch_size=1, # 里边已经分好batch了 走default_collate
gradient_accumulation_steps=args.total_batch//args.micro_batch,
warmup_ratio=args.warmup_ratio,
num_train_epochs=args.num_epoch,
learning_rate=args.learning_rate,
fp16=True,
logging_steps=args.log_steps,
logging_first_step=True, # convenient
evaluation_strategy="no",
save_strategy="no",
# save_total_limit=1,
# eval_steps=args.eval_steps if args.eval_data_path else None,
# save_steps=args.save_steps,
output_dir=args.output_path,
ddp_find_unused_parameters=False if ddp else None,
report_to="wandb" if args.use_wandb else [],
ignore_data_skip=args.ignore_data_skip,
),
data_collator= attr_collate,
)
if not args.use_wandb:
wandb.init(mode='disabled')
trainer.remove_callback(PrinterCallback)
trainer.add_callback(CustomCallback(trainer,tokenizer,decoder_tokenizer,prompter,args))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model) # for 3090/4090 好像没啥加速效果
trainer.train(resume_from_checkpoint=args.resume_from_checkpoint)
if args.use_wandb:
wandb.config.update(args, allow_val_change=True)
logger.info({'wandb-url': wandb.run.get_url()})
# TODO: unwrap the `_orig_mod`
torch.save(model.state_dict(),f'{args.output_path}/checkpoint-final')
def _start(
*,
task_name: str=None,
cutoff: int=512,
data_path: str=None,
output_path: str=None,
dev_data_path: str=None,
use_wandb:bool=False,
CUTOFF_LEN:int=128,
encoder_path:str='bert-base-uncased',
decoder_path:str='microsoft/DialoGPT-medium',
kl_ratio:float=1.,
share_encoder:bool=False,
full_decoder:bool=False,
micro_batch:int=4,
total_batch:int=32,
warmup_ratio:float= 0.05,
num_epoch:int=100,
latent_size:int=64,
learning_rate:float=5e-5,
log_steps:int=100,
int8:bool=False,
ignore_data_skip:bool=False,
resume_from_checkpoint:str=None,
use_context:bool=False,
attrs: str=None, # 0,1,2
ids: str=None, # 0,0;0,1;1,0;1,1
attr_cls_ratio: float=0.,
attr_gap_ratio: float=0.,
prior_cls: bool=False,
prior_gap: bool=False,
negap: bool=False
):
import inspect
frame = inspect.currentframe()
names, _, _, locals = inspect.getargvalues(frame)
args = utils.HyperParams().from_inspect(names, locals)
if modeling.parse_attr(args):
args.use_attr=True
train_cvae_attr(args)
else:
train_cvae(args)
if __name__ == "__main__":
import defopt
defopt.run(_start)