forked from Kuldeep-Singh-Bithu/Sentiment_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SentimentScore.R
37 lines (32 loc) · 1.13 KB
/
SentimentScore.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
score.sentiment = function(sentences, pos.words, neg.words, .progress='none')
{
require(plyr)
require(stringr)
list=lapply(sentences, function(sentence, pos.words, neg.words)
{
sentence = gsub('[[:punct:]]',' ',sentence)
sentence = gsub('[[:cntrl:]]','',sentence)
sentence = gsub('\\d+','',sentence)
sentence = gsub('\n','',sentence)
sentence = tolower(sentence)
word.list = str_split(sentence, '\\s+')
words = unlist(word.list)
pos.matches = match(words, pos.words)
neg.matches = match(words, neg.words)
pos.matches = !is.na(pos.matches)
neg.matches = !is.na(neg.matches)
pp=sum(pos.matches)
nn = sum(neg.matches)
score = sum(pos.matches) - sum(neg.matches)
list1=c(score, pp, nn)
return (list1)
}, pos.words, neg.words)
score_new=lapply(list, `[[`, 1)
pp1=score=lapply(list, `[[`, 2)
nn1=score=lapply(list, `[[`, 3)
scores.df = data.frame(score=score_new, text=sentences)
positive.df = data.frame(Positive=pp1, text=sentences)
negative.df = data.frame(Negative=nn1, text=sentences)
list_df=list(scores.df, positive.df, negative.df)
return(list_df)
}