-
Notifications
You must be signed in to change notification settings - Fork 432
/
Copy pathtest_prune.py
178 lines (131 loc) · 5.89 KB
/
test_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
from models import *
from utils.utils import *
import torch
import numpy as np
from copy import deepcopy
from test import evaluate
from terminaltables import AsciiTable
import time
from utils.prune_utils import *
class opt():
model_def = "config/yolov3-hand.cfg"
data_config = "config/oxfordhand.data"
model = 'checkpoints/yolov3_ckpt.pth'
#%%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Darknet(opt.model_def).to(device)
model.load_state_dict(torch.load(opt.model))
data_config = parse_data_config(opt.data_config)
valid_path = data_config["valid"]
class_names = load_classes(data_config["names"])
eval_model = lambda model:evaluate(model, path=valid_path, iou_thres=0.5, conf_thres=0.01,
nms_thres=0.5, img_size=model.img_size, batch_size=8)
obtain_num_parameters = lambda model:sum([param.nelement() for param in model.parameters()])
origin_model_metric = eval_model(model)
origin_nparameters = obtain_num_parameters(model)
CBL_idx, Conv_idx, prune_idx= parse_module_defs(model.module_defs)
bn_weights = gather_bn_weights(model.module_list, prune_idx)
sorted_bn = torch.sort(bn_weights)[0]
# 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限)
highest_thre = []
for idx in prune_idx:
highest_thre.append(model.module_list[idx][1].weight.data.abs().max().item())
highest_thre = min(highest_thre)
# 找到highest_thre对应的下标对应的百分比
percent_limit = (sorted_bn==highest_thre).nonzero().item()/len(bn_weights)
print(f'Threshold should be less than {highest_thre:.4f}.')
print(f'The corresponding prune ratio is {percent_limit:.3f}.')
#%%
def prune_and_eval(model, sorted_bn, percent=.0):
model_copy = deepcopy(model)
thre_index = int(len(sorted_bn) * percent)
thre = sorted_bn[thre_index]
print(f'Channels with Gamma value less than {thre:.4f} are pruned!')
remain_num = 0
for idx in prune_idx:
bn_module = model_copy.module_list[idx][1]
mask = obtain_bn_mask(bn_module, thre)
remain_num += int(mask.sum())
bn_module.weight.data.mul_(mask)
mAP = eval_model(model_copy)[2].mean()
print(f'Number of channels has been reduced from {len(sorted_bn)} to {remain_num}')
print(f'Prune ratio: {1-remain_num/len(sorted_bn):.3f}')
print(f'mAP of the pruned model is {mAP:.4f}')
return thre
percent = 0.85
threshold = prune_and_eval(model, sorted_bn, percent)
#%%
def obtain_filters_mask(model, thre, CBL_idx, prune_idx):
pruned = 0
total = 0
num_filters = []
filters_mask = []
for idx in CBL_idx:
bn_module = model.module_list[idx][1]
if idx in prune_idx:
mask = obtain_bn_mask(bn_module, thre).cpu().numpy()
remain = int(mask.sum())
pruned = pruned + mask.shape[0] - remain
if remain == 0:
print("Channels would be all pruned!")
raise Exception
print(f'layer index: {idx:>3d} \t total channel: {mask.shape[0]:>4d} \t '
f'remaining channel: {remain:>4d}')
else:
mask = np.ones(bn_module.weight.data.shape)
remain = mask.shape[0]
total += mask.shape[0]
num_filters.append(remain)
filters_mask.append(mask.copy())
prune_ratio = pruned / total
print(f'Prune channels: {pruned}\tPrune ratio: {prune_ratio:.3f}')
return num_filters, filters_mask
num_filters, filters_mask = obtain_filters_mask(model, threshold, CBL_idx, prune_idx)
#%%
CBLidx2mask = {idx: mask for idx, mask in zip(CBL_idx, filters_mask)}
pruned_model = prune_model_keep_size(model, prune_idx, CBL_idx, CBLidx2mask)
eval_model(pruned_model)
#%%
compact_module_defs = deepcopy(model.module_defs)
for idx, num in zip(CBL_idx, num_filters):
assert compact_module_defs[idx]['type'] == 'convolutional'
compact_module_defs[idx]['filters'] = str(num)
#%%
compact_model = Darknet([model.hyperparams.copy()] + compact_module_defs).to(device)
compact_nparameters = obtain_num_parameters(compact_model)
init_weights_from_loose_model(compact_model, pruned_model, CBL_idx, Conv_idx, CBLidx2mask)
#%%
random_input = torch.rand((1, 3, model.img_size, model.img_size)).to(device)
def obtain_avg_forward_time(input, model, repeat=200):
model.eval()
start = time.time()
with torch.no_grad():
for i in range(repeat):
output = model(input)
avg_infer_time = (time.time() - start) / repeat
return avg_infer_time, output
pruned_forward_time, pruned_output = obtain_avg_forward_time(random_input, pruned_model)
compact_forward_time, compact_output = obtain_avg_forward_time(random_input, compact_model)
diff = (pruned_output-compact_output).abs().gt(0.001).sum().item()
if diff > 0:
print('Something wrong with the pruned model!')
#%%
# 在测试集上测试剪枝后的模型, 并统计模型的参数数量
compact_model_metric = eval_model(compact_model)
#%%
# 比较剪枝前后参数数量的变化、指标性能的变化
metric_table = [
["Metric", "Before", "After"],
["mAP", f'{origin_model_metric[2].mean():.6f}', f'{compact_model_metric[2].mean():.6f}'],
["Parameters", f"{origin_nparameters}", f"{compact_nparameters}"],
["Inference", f'{pruned_forward_time:.4f}', f'{compact_forward_time:.4f}']
]
print(AsciiTable(metric_table).table)
#%%
# 生成剪枝后的cfg文件并保存模型
pruned_cfg_name = opt.model_def.replace('/', f'/prune_{percent}_')
pruned_cfg_file = write_cfg(pruned_cfg_name, [model.hyperparams.copy()] + compact_module_defs)
print(f'Config file has been saved: {pruned_cfg_file}')
compact_model_name = opt.model.replace('/', f'/prune_{percent}_')
torch.save(compact_model.state_dict(), compact_model_name)
print(f'Compact model has been saved: {compact_model_name}')