Skip to content

Latest commit

 

History

History
61 lines (51 loc) · 1.35 KB

README.md

File metadata and controls

61 lines (51 loc) · 1.35 KB

SSOCR

Seven Segment Optical Character Recognition

Algorithm

solution

DIGITS_LOOKUP = {
    (1, 1, 1, 1, 1, 1, 0): 0,
    (1, 1, 0, 0, 0, 0, 0): 1,
    (1, 0, 1, 1, 0, 1, 1): 2,
    (1, 1, 1, 0, 0, 1, 1): 3,
    (1, 1, 0, 0, 1, 0, 1): 4,
    (0, 1, 1, 0, 1, 1, 1): 5,
    (0, 1, 1, 1, 1, 1, 1): 6,
    (1, 1, 0, 0, 0, 1, 0): 7,
    (1, 1, 1, 1, 1, 1, 1): 8,
    (1, 1, 1, 0, 1, 1, 1): 9,
    (0, 0, 0, 0, 0, 1, 1): '-'
}

Digital recognition of seven-segment digital tube is relatively simple compared to handwritten numeral.

Detect the existence of the corresponding bit, then encode the image, you can accurately identify the number.

Requirements

  • opencv
  • numpy
  • matplotlib

Setup

git clone https://github.com/jiweibo/SSOCR.git
python ssocr.py images/test1.bmp -s

Results

test1.bmp res1.bmp test2.bmp res2.bmp test3.bmp res3.bmp test4.bmp res4.bmp

$ python ssocr.py images\test1.BMP
['-', 3, 0, '.', 3, 7]
$ python ssocr.py images\test2.BMP -s
[1, 7, 7, '.', 7]
$ python ssocr.py images\test3.BMP -s
[0, 7, 8, '.', 3]
$ python ssocr.py images\test4.BMP -s
[0, 7, 2, '.', 6]

Acknowledge

SSOCR