-
Notifications
You must be signed in to change notification settings - Fork 540
/
Copy pathmod25519.c
604 lines (543 loc) · 17.7 KB
/
mod25519.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#ifndef __MOD25519_C
#define __MOD25519_C
#include "common.h"
#include "endianess.h"
#include "bignum.c"
/*
* Operations over the field of integers modulo 2²⁵⁵ - 19
*/
#if defined(MASK26) || defined(MASK25) || defined(MASK13) || defined(MASK12)
#error Necessary macros are already defined
#endif
#define MASK26 ((1ULL<<26)-1)
#define MASK25 ((1ULL<<25)-1)
#define MASK13 ((1ULL<<13)-1)
#define MASK12 ((1ULL<<12)-1)
STATIC void reduce_25519_le64(uint64_t x[4]);
/*
* Convert a 256-bit number in radix 2⁶⁴ and little-endian mode,
* to mixed radix 2²⁵/2²⁶, also little-endian.
*/
STATIC void convert_le64_to_le25p5(uint32_t out[10], const uint64_t in[4])
{
/** MSB of in[3] will be ignored */
out[0] = in[0] & MASK26; /* Fill 26 bits: 38 bits left in in[0] */
out[1] = (in[0] >> 26) & MASK25; /* Fill 25 bits: 13 bits left in in[0] */
out[2] = (uint32_t)((in[0] >> 51) | (in[1] & MASK13) << 13); /* Fill 26 bits: 51 bits left in in[1] */
out[3] = (in[1] >> 13) & MASK25; /* Fill 25 bits: 26 bits left in in[1] */
out[4] = (uint32_t)(in[1] >> 38); /* Fill 26 bits: no bits left in in[1] */
out[5] = in[2] & MASK25; /* Fill 25 bits: 39 bits left in in[2] */
out[6] = (in[2] >> 25) & MASK26; /* Fill 26 bits: 13 bits left in in[2] */
out[7] = (uint32_t)((in[2] >> 51) | (in[3] & MASK12) << 13); /* Fill 25 bits: 52 bits left in in[3] */
out[8] = (in[3] >> 12) & MASK26; /* Fill 26 bits: 26 bits left in in[3] */
out[9] = (uint32_t)(in[3] >> 38); /* Fill 26 bits in theory, 25 in practice */
}
/*
* Convert a 256-bit number in mixed radix 2²⁵/2²⁶ and little-endian mode,
* to radix 2⁶⁴, also little-endian mode.
*
* The input limbs must fulfill the conditions:
* in[i] < 2²⁶ for even i (0, 2, 4, etc)
* in[j] < 2²⁵ for odd j<9 (1, 3, 5, etc)
* in[9] < 2²⁶
*/
STATIC void convert_le25p5_to_le64(uint64_t out[4], const uint32_t in[10])
{
/** We assume that the 6 or 7 upper bits of in[] words is set to 0 */
assert(in[0] >> 26 == 0);
assert(in[1] >> 25 == 0);
assert(in[2] >> 26 == 0);
assert(in[3] >> 25 == 0);
assert(in[4] >> 26 == 0);
assert(in[5] >> 25 == 0);
assert(in[6] >> 26 == 0);
assert(in[7] >> 25 == 0);
assert(in[8] >> 26 == 0);
assert(in[9] >> 26 == 0);
out[0] = in[0] | (uint64_t)in[1] << 26 | ((uint64_t)in[2] & MASK13) << 51; /* 64 = 26 + 25 + 13: 13 bits left in in[2] */
out[1] = in[2] >> 13 | (uint64_t)in[3] << 13 | (uint64_t)in[4] << 38; /* 64 = 13 + 25 + 26: no bits left in[4] */
out[2] = in[5] | (uint64_t)in[6] << 25 | ((uint64_t)in[7] & MASK13) << 51; /* 64 = 25 + 26 + 13: 12 bits left in in[7] */
out[3] = in[7] >> 13 | (uint64_t)in[8] << 12 | (uint64_t)in[9] << 38; /* 64 = 12 + 26 + 26(!) */
}
/*
* Deserialize a 255-bit little-endian integer
* to mixed radix 2²⁶/2²⁵, also little-endian.
*/
STATIC void convert_le8_to_le25p5(uint32_t out[10], const uint8_t in[32])
{
uint64_t in64[4];
unsigned i;
for (i=0; i<4; i++) {
in64[i] = LOAD_U64_LITTLE(&in[i*8]);
}
convert_le64_to_le25p5(out, in64);
}
/*
* Serialize a 256-bit mixed-radix 2²⁶/2²⁵ little-endian integer
* into a little-endian byte string.
*
* The input limbs must fulfill the conditions:
* in[i] < 2²⁶ for even i (0, 2, 4, etc)
* in[j] < 2²⁵ for odd j<9 (1, 3, 5, etc)
* in[9] < 2²⁶
*/
STATIC void convert_le25p5_to_le8(uint8_t out[32], const uint32_t in[10])
{
uint64_t out64[4];
unsigned i;
convert_le25p5_to_le64(out64, in);
reduce_25519_le64(out64);
for (i=0; i<4; i++) {
STORE_U64_LITTLE(&out[i*8], out64[i]);
}
}
/*
* Deserialize a 255-bit big-endian integer
* to mixed radix 2²⁶/2²⁵ little-endian.
*/
STATIC void convert_be8_to_le25p5(uint32_t out[10], const uint8_t in[32])
{
uint64_t in64[4];
unsigned i;
for (i=0; i<4; i++) {
in64[3-i] = LOAD_U64_BIG(&in[i*8]);
}
convert_le64_to_le25p5(out, in64);
}
/*
* Serialize a 256-bit mixed-radix 2²⁶/2²⁵ little-endian integer
* into a big-endian byte string.
*
* The input limbs must fulfill the conditions:
* in[i] < 2²⁶ for even i (0, 2, 4, etc)
* in[j] < 2²⁵ for odd j<9 (1, 3, 5, etc)
* in[9] < 2²⁶
*/
STATIC void convert_le25p5_to_be8(uint8_t out[32], const uint32_t in[10])
{
uint64_t out64[4];
unsigned i;
convert_le25p5_to_le64(out64, in);
reduce_25519_le64(out64);
for (i=0; i<4; i++) {
STORE_U64_BIG(&out[i*8], out64[3-i]);
}
}
/*
* Return non-zero if a 256-bit mixed-radix 2²⁶/2²⁵ little-endian integer is zero.
*/
STATIC int is_le25p5_zero(const uint32_t in[10])
{
uint64_t out64[4];
convert_le25p5_to_le64(out64, in);
reduce_25519_le64(out64);
return (out64[0] | out64[1] | out64[2] | out64[3]) == 0;
}
static int hex2bin(char in)
{
if ((in >= '0') && (in <= '9'))
return in - '0';
if ((in >= 'A') && (in <= 'F'))
return in - 'A' + 10;
if ((in >= 'a') && (in <= 'f'))
return in - 'a' + 10;
return -1;
}
static char bin2hex(uint8_t b)
{
if (b < 10)
return (char)('0' + b);
return (char)('a' + b - 10);
}
/*
* Convert a big-endian hexadecimal number (up to 256 bits, and as a zero-terminated ASCII string)
* to mixed radix 2²⁶/2²⁵, also little-endian.
*/
STATIC int convert_behex_to_le25p5(uint32_t out[10], const char *in)
{
size_t len;
uint8_t bin[32];
unsigned i;
if (in == NULL)
return ERR_NULL;
len = strlen(in);
if (len > 64)
return ERR_MAX_DATA;
if (len & 1)
return ERR_BLOCK_SIZE;
memset(bin, 0, sizeof bin);
for (i=0; i<len; i+=2) {
int c1, c2;
c1 = hex2bin(in[len-1-i]);
c2 = hex2bin(in[len-1-i-1]);
if ((c1 < 0) || (c2 < 0))
return ERR_VALUE;
bin[i/2] = (uint8_t)(c2 * 16 + c1);
}
convert_le8_to_le25p5(out, bin);
return 0;
}
/*
* Convert a number in mixed radix 2²⁶/2²⁵, little-endian form
* into a new ASCII hex, zero-terminated string. The caller
* is responsible for deallocating the string.
*/
STATIC int convert_le25p5_to_behex(char **out, uint32_t in[10])
{
uint8_t bin[32];
unsigned i;
if (NULL == out)
return ERR_NULL;
convert_le25p5_to_le8(bin, in);
*out = calloc(64 + 1, 1);
for (i=0; i<32; i++) {
*(*out+64-1-i*2) = bin2hex(bin[i] & 0xF);
*(*out+64-2-i*2) = bin2hex(bin[i] >> 4);
}
return 0;
}
#if 0
static void print_le25p5(char *str, const uint32_t n[10])
{
uint8_t bin[32];
convert_le25p5_to_le8(bin, n);
printf("%s", str);
for (unsigned i=0; i<32; i++) {
printf("%02X", bin[i]);
}
printf("\n");
}
#endif
/*
* Reduce a 256-bit number (2⁶⁴ radix, litte-endian) modulo 2²⁵⁵ - 19.
*/
STATIC void reduce_25519_le64(uint64_t x[4])
{
unsigned borrow;
uint64_t tmp1[4], tmp2[4];
static const uint64_t modulus[4] = { 0xffffffffffffffedULL, 0xffffffffffffffffULL, 0xffffffffffffffffULL, 0x7fffffffffffffffULL };
borrow = sub(tmp1, x, modulus, 4);
mod_select(tmp2, x, tmp1, borrow, 4);
borrow = sub(tmp1, tmp2, modulus, 4);
mod_select(x, tmp2, tmp1, borrow, 4);
}
/*
* Multiply f[] and g[] modulo 2²⁵⁵ - 19.
*
* The inputs f[] and g[] are encoded in mixed radix 2²⁶/2²⁵ with limbs < 2²⁷.
*
* The result out[] is encoded in also mixed radix 2²⁶/2²⁵ such that:
* f[i] < 2²⁶ for even i
* f[j] < 2²⁵ for odd j<9
* f[9] < 2²⁶
*/
STATIC void mul_25519(uint32_t out[10], const uint32_t f[10], const uint32_t g[10])
{
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8, h9;
uint64_t f0, f1, f2, f3, f4, f5, f6, f7, f8, f9;
uint64_t f1_38, f2_19, f3_19, f4_19, f5_19, f6_19, f7_19, f8_19, f9_19;
uint64_t g0, g1, g2, g3, g4, g5, g6, g7, g8, g9;
uint64_t carry;
f0 = f[0]; f1 = f[1]; f2 = f[2]; f3 = f[3]; f4 = f[4]; f5 = f[5]; f6 = f[6]; f7 = f[7]; f8 = f[8]; f9 = f[9];
g0 = g[0]; g1 = g[1]; g2 = g[2]; g3 = g[3]; g4 = g[4]; g5 = g[5]; g6 = g[6]; g7 = g[7]; g8 = g[8]; g9 = g[9];
f1_38 = (uint64_t)38*f[1];
f2_19 = (uint64_t)19*f[2];
f3_19 = (uint64_t)19*f[3];
f4_19 = (uint64_t)19*f[4];
f5_19 = (uint64_t)19*f[5];
f6_19 = (uint64_t)19*f[6];
f7_19 = (uint64_t)19*f[7];
f8_19 = (uint64_t)19*f[8];
f9_19 = (uint64_t)19*f[9];
/** input terms can the result of at most 4 additions **/
h0 = f0*g0 + f1_38*g9 + f2_19*g8 + 2*f3_19*g7 + f4_19*g6 +
2*f5_19*g5 + f6_19*g4 + 2*f7_19*g3 + f8_19*g2 + 2*f9_19*g1;
h1 = f0*g1 + f1*g0 + f2_19*g9 + f3_19*g8 + f4_19*g7 +
f5_19*g6 + f6_19*g5 + f7_19*g4 + f8_19*g3 + f9_19*g2;
h2 = f0*g2 + 2*f1*g1 + f2*g0 + 2*f3_19*g9 + f4_19*g8 +
2*f5_19*g7 + f6_19*g6 + 2*f7_19*g5 + f8_19*g4 + 2*f9_19*g3;
h3 = f0*g3 + f1*g2 + f2*g1 + f3*g0 + f4_19*g9 +
f5_19*g8 + f6_19*g7 + f7_19*g6 + f8_19*g5 + f9_19*g4;
h4 = f0*g4 + 2*f1*g3 + f2*g2 + 2*f3*g1 + f4*g0 +
2*f5_19*g9 + f6_19*g8 + 2*f7_19*g7 + f8_19*g6 + 2*f9_19*g5;
h5 = f0*g5 + f1*g4 + f2*g3 + f3*g2 + f4*g1 +
f5*g0 + f6_19*g9 + f7_19*g8 + f8_19*g7 + f9_19*g6;
h6 = f0*g6 + 2*f1*g5 + f2*g4 + 2*f3*g3 + f4*g2 +
2*f5*g1 + f6*g0 + 2*f7_19*g9 + f8_19*g8 + 2*f9_19*g7;
h7 = f0*g7 + f1*g6 + f2*g5 + f3*g4 + f4*g3 +
f5*g2 + f6*g1 + f7*g0 + f8_19*g9 + f9_19*g8;
h8 = f0*g8 + 2*f1*g7 + f2*g6 + 2*f3*g5 + f4*g4 +
2*f5*g3 + f6*g2 + 2*f7*g1 + f8*g0 + 2*f9_19*g9;
h9 = f0*g9 + f1*g8 + f2*g7 + f3*g6 + f4*g5 +
f5*g4 + f6*g3 + f7*g2 + f8*g1 + f9*g0;
/* h0..h9 < 2⁶³ */
carry = h8 >> 26;
h8 &= MASK26;
/* carry < 2³⁷ */
h9 += carry;
carry = (h9 >> 25)*19;
h9 &= MASK25;
/* carry < 2⁴⁴ */
h0 += carry;
carry = h0 >> 26;
h0 &= MASK26;
/* carry < 2³⁸ */
h1 += carry;
carry = h1 >> 25;
h1 &= MASK25;
/* carry < 2³⁹ */
h2 += carry;
carry = h2 >> 26;
h2 &= MASK26;
/* carry < 2³⁸ */
h3 += carry;
carry = h3 >> 25;
h3 &= MASK25;
/* carry < 2³⁹ */
h4 += carry;
carry = h4 >> 26;
h4 &= MASK26;
/* carry < 2³⁸ */
h5 += carry;
carry = h5 >> 25;
h5 &= MASK25;
/* carry < 2³⁹ */
h6 += carry;
carry = h6 >> 26;
h6 &= MASK26;
/* carry < 2³⁸ */
h7 += carry;
carry = h7 >> 25;
h7 &= MASK25;
/* carry < 2³⁹ */
h8 += carry;
carry = h8 >> 26;
h8 &= MASK26;
/* carry < 2¹⁴ */
h9 += carry;
/* h9 < 2²⁶ */
out[0] = (uint32_t)h0;
out[1] = (uint32_t)h1;
out[2] = (uint32_t)h2;
out[3] = (uint32_t)h3;
out[4] = (uint32_t)h4;
out[5] = (uint32_t)h5;
out[6] = (uint32_t)h6;
out[7] = (uint32_t)h7;
out[8] = (uint32_t)h8;
out[9] = (uint32_t)h9;
}
/*
* Compute addition for mixed-radix 2²⁶/2²⁵.
* If the biggest input limb fits into x bits (x<32), the biggest output limb will fit into (x+1) bits.
*/
STATIC void add32(uint32_t out[10], const uint32_t a[10], const uint32_t b[10])
{
unsigned i;
for (i=0; i<10; i++) {
out[i] = a[i] + b[i];
}
}
/*
* Swap arguments a/c and b/d when condition is NOT ZERO.
* If the condition IS ZERO, no swapping takes place.
*/
STATIC void cswap(uint32_t a[10], uint32_t b[10], uint32_t c[10], uint32_t d[10], unsigned swap)
{
uint32_t mask, i, e, f;
mask = (uint32_t)(0 - (swap!=0)); /* 0 if swap is 0, all 1s if swap is !=0 */
for (i=0; i<10; i++) {
e = mask & (a[i] ^ c[i]);
a[i] ^= e;
c[i] ^= e;
f = mask & (b[i] ^ d[i]);
b[i] ^= f;
d[i] ^= f;
}
}
/*
* Compute x⁻¹ in prime field 2²⁵⁵ - 19
*
* The input x[] is encoded in mixed radix 2²⁶/2²⁵ with limbs < 2²⁷.
*
* The result out[] is encoded in also mixed radix 2²⁶/2²⁵ such that:
* out[i] < 2²⁶ for even i
* out[j] < 2²⁵ for odd j<9
* out[9] < 2²⁶
*/
STATIC void invert_25519(uint32_t out[10], const uint32_t x[10])
{
uint32_t a[10], x1[10], x3p0[10], x3p1p0[10], x5m0[10];
uint32_t x10m0[10], x20m0[10], x50m0[10], x100m0[10];
unsigned i;
#define sqr_25519(a,b) mul_25519(a,b,b)
sqr_25519(x1, x); /* 2¹ */
sqr_25519(a, x1); /* 2² */
sqr_25519(a, a); /* 2³ */
mul_25519(x3p0, a, x); /* 2³ + 2⁰ */
mul_25519(x3p1p0, x3p0, x1);/* 2³ + 2¹ + 2⁰ = 11 */
sqr_25519(a, x3p1p0); /* 2⁴ + 2² + 2¹ */
mul_25519(x5m0, a, x3p0); /* 2⁴ + 2³ + 2² + 2¹ + 2⁰ = 2⁵ - 2⁰ */
sqr_25519(a, x5m0); /* 2⁶ - 2¹ */
sqr_25519(a, a); /* 2⁷ - 2² */
sqr_25519(a, a); /* 2⁸ - 2³ */
sqr_25519(a, a); /* 2⁹ - 2⁴ */
sqr_25519(a, a); /* 2¹⁰ - 2⁵ */
mul_25519(a, a, x5m0); /* 2¹⁰ - 2⁰ */
memcpy(x10m0, a, sizeof a);
for (i=0; i<10; i++) {
sqr_25519(a, a);
} /* 2²⁰ - 2¹⁰ */
mul_25519(a, a, x10m0); /* 2²⁰ - 2⁰ */
memcpy(x20m0, a, sizeof a);
for (i=0; i<20; i++) {
sqr_25519(a, a);
} /* 2⁴⁰ - 2²⁰ */
mul_25519(a, a, x20m0); /* 2⁴⁰ - 2⁰ */
for (i=0; i<10; i++) {
sqr_25519(a, a);
} /* 2⁵⁰ - 2¹⁰ */
mul_25519(a, a, x10m0); /* 2⁵⁰ - 2⁰ */
memcpy(x50m0, a, sizeof a);
for (i=0; i<50; i++) {
sqr_25519(a, a);
} /* 2¹⁰⁰ - 2⁵⁰ */
mul_25519(a, a, x50m0); /* 2¹⁰⁰ - 2⁰ */
memcpy(x100m0, a, sizeof a);
for (i=0; i<100; i++) {
sqr_25519(a, a);
} /* 2²⁰⁰ - 2¹⁰⁰ */
mul_25519(a, a, x100m0); /* 2²⁰⁰ - 2⁰ */
for (i=0; i<50; i++) {
sqr_25519(a, a);
} /* 2²⁵⁰ - 2⁵⁰ */
mul_25519(a, a, x50m0); /* 2²⁵⁰ - 2⁰ */
sqr_25519(a, a); /* 2²⁵¹ - 2¹ */
sqr_25519(a, a); /* 2²⁵² - 2² */
sqr_25519(a, a); /* 2²⁵³ - 2³ */
sqr_25519(a, a); /* 2²⁵⁴ - 2⁴ */
sqr_25519(a, a); /* 2²⁵⁵ - 2⁵ = 2²⁵⁵ - 32 */
mul_25519(out, a, x3p1p0); /* 2²⁵⁵ - 21 */
}
/*
* Add f[] and g[] modulo 2²⁵⁵ - 19.
*
* f[] and g[] are encoded in radix 2²⁶/2²⁵ and each limb is < 2²⁸.
*
* The result out[] is encoded in also radix 2²⁶/2²⁵ such that:
* out[i] < 2²⁶ for even i
* out[j] < 2²⁵ for odd j<9
* out[9] < 2²⁶
*/
STATIC void add_25519(uint32_t out[10], const uint32_t f[10], const uint32_t g[10])
{
uint32_t h0, h1, h2, h3, h4, h5, h6, h7, h8, h9;
uint32_t carry;
h0 = f[0] + g[0];
h1 = f[1] + g[1];
h2 = f[2] + g[2];
h3 = f[3] + g[3];
h4 = f[4] + g[4];
h5 = f[5] + g[5];
h6 = f[6] + g[6];
h7 = f[7] + g[7];
h8 = f[8] + g[8];
h9 = f[9] + g[9];
/* h0..h9 < 2²⁸ */
carry = h8 >> 26;
h8 &= MASK26;
/* carry < 2² */
h9 += carry;
carry = (h9 >> 25)*19;
h9 &= MASK25;
/* carry < 2⁹ */
h0 += carry;
carry = h0 >> 26;
h0 &= MASK26;
/* carry < 2³ */
h1 += carry;
carry = h1 >> 25;
h1 &= MASK25;
/* carry < 2⁴ */
h2 += carry;
carry = h2 >> 26;
h2 &= MASK26;
/* carry < 2³ */
h3 += carry;
carry = h3 >> 25;
h3 &= MASK25;
/* carry < 2⁴ */
h4 += carry;
carry = h4 >> 26;
h4 &= MASK26;
/* carry < 2³ */
h5 += carry;
carry = h5 >> 25;
h5 &= MASK25;
/* carry < 2⁴ */
h6 += carry;
carry = h6 >> 26;
h6 &= MASK26;
/* carry < 2³ */
h7 += carry;
carry = h7 >> 25;
h7 &= MASK25;
/* carry < 2⁴ */
h8 += carry;
carry = h8 >> 26;
h8 &= MASK26;
/* carry < 2¹ */
h9 += carry;
/* h9 < 2²⁶ */
out[0] = h0;
out[1] = h1;
out[2] = h2;
out[3] = h3;
out[4] = h4;
out[5] = h5;
out[6] = h6;
out[7] = h7;
out[8] = h8;
out[9] = h9;
}
/*
* Carry out subtraction a[] - b[] for mixed-radix 2²⁶/2²⁵ modulo 2²⁵⁵-19.
*
* The output out[] is such that:
* x[i] < 2²⁶ for even i
* x[j] < 2²⁵ for odd j<9
* x[9] < 2²⁶
*/
STATIC void sub_25519(uint32_t out[10], const uint32_t a[10], const uint32_t b[10])
{
/*
* We pre-sum a number which is congruent to zero modulo 2²⁵⁵-19.
* Limbs with even index are larger than any 26 bit number.
* Limbs with odd index are larger than any 25 bit number.
*/
static const uint32_t modulus_32[10] = { 0x7ffffda, 0x3fffffe, 0x7fffffe, 0x3fffffe, 0x7fffffe, 0x3fffffe, 0x7fffffe, 0x3fffffe, 0x7fffffe, 0x3fffffe };
uint32_t zero[10] = { 0 };
unsigned i;
for (i=0; i<10; i++) {
out[i] = modulus_32[i] + a[i] - b[i];
}
/** Reduce the output, because each limb is now < 2²⁸ **/
add_25519(out, out, zero);
}
/*
* Reduce a 256-bit number (mixed radix 2²⁶/²⁵, litte-endian) modulo 2²⁵⁵ - 19.
*
* Each limb of x[] in input is < 2²⁸
*
* The result x[] in output is such that:
* x[i] < 2²⁶ for even i
* x[j] < 2²⁵ for odd j<9
* x[9] < 2²⁶
*/
STATIC void reduce_25519_le25p5(uint32_t x[10])
{
uint32_t zero[10] = { 0 };
add_25519(x, x, zero);
assert((x[0] >> 26) == 0);
}
#endif /* __MOD25519_C */