-
Notifications
You must be signed in to change notification settings - Fork 423
/
Copy pathmean_ap.py
1073 lines (929 loc) · 51.4 KB
/
mean_ap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import io
import json
from collections.abc import Sequence
from types import ModuleType
from typing import Any, Callable, ClassVar, List, Optional, Union
import numpy as np
import torch
from lightning_utilities import apply_to_collection
from torch import Tensor
from torch import distributed as dist
from typing_extensions import Literal
from torchmetrics.detection.helpers import _fix_empty_tensors, _input_validator, _validate_iou_type_arg
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.imports import (
_FASTER_COCO_EVAL_AVAILABLE,
_MATPLOTLIB_AVAILABLE,
_PYCOCOTOOLS_AVAILABLE,
_TORCHVISION_AVAILABLE,
)
from torchmetrics.utilities.plot import _AX_TYPE, _PLOT_OUT_TYPE
if not _MATPLOTLIB_AVAILABLE:
__doctest_skip__ = ["MeanAveragePrecision.plot"]
if not (_PYCOCOTOOLS_AVAILABLE or _FASTER_COCO_EVAL_AVAILABLE):
__doctest_skip__ = [
"MeanAveragePrecision.plot",
"MeanAveragePrecision",
"MeanAveragePrecision.tm_to_coco",
"MeanAveragePrecision.coco_to_tm",
]
def _load_backend_tools(backend: Literal["pycocotools", "faster_coco_eval"]) -> tuple[object, object, ModuleType]:
"""Load the backend tools for the given backend."""
if backend == "pycocotools":
if not _PYCOCOTOOLS_AVAILABLE:
raise ModuleNotFoundError(
"Backend `pycocotools` in metric `MeanAveragePrecision` metric requires that `pycocotools` is"
" installed. Please install with `pip install pycocotools` or `pip install torchmetrics[detection]`"
)
import pycocotools.mask as mask_utils
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
return COCO, COCOeval, mask_utils
if not _FASTER_COCO_EVAL_AVAILABLE:
raise ModuleNotFoundError(
"Backend `faster_coco_eval` in metric `MeanAveragePrecision` metric requires that `faster-coco-eval` is"
" installed. Please install with `pip install faster-coco-eval`."
)
from faster_coco_eval import COCO
from faster_coco_eval import COCOeval_faster as COCOeval
from faster_coco_eval.core import mask as mask_utils
return COCO, COCOeval, mask_utils
class MeanAveragePrecision(Metric):
r"""Compute the `Mean-Average-Precision (mAP) and Mean-Average-Recall (mAR)`_ for object detection predictions.
.. math::
\text{mAP} = \frac{1}{n} \sum_{i=1}^{n} AP_i
where :math:`AP_i` is the average precision for class :math:`i` and :math:`n` is the number of classes. The average
precision is defined as the area under the precision-recall curve. For object detection the recall and precision are
defined based on the intersection of union (IoU) between the predicted bounding boxes and the ground truth bounding
boxes e.g. if two boxes have an IoU > t (with t being some threshold) they are considered a match and therefore
considered a true positive. The precision is then defined as the number of true positives divided by the number of
all detected boxes and the recall is defined as the number of true positives divided by the number of all ground
boxes.
As input to ``forward`` and ``update`` the metric accepts the following input:
- ``preds`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes``
detection boxes of the format specified in the constructor.
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates, but can be changed
using the ``box_format`` parameter. Only required when `iou_type="bbox"`.
- ``scores`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes)`` containing detection scores for the
boxes.
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed detection
classes for the boxes.
- ``masks`` (:class:`~torch.Tensor`): boolean tensor of shape ``(num_boxes, image_height, image_width)``
containing boolean masks. Only required when `iou_type="segm"`.
- ``target`` (:class:`~List`): A list consisting of dictionaries each containing the key-values
(each dictionary corresponds to a single image). Parameters that should be provided per dict:
- ``boxes`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes, 4)`` containing ``num_boxes`` ground
truth boxes of the format specified in the constructor. only required when `iou_type="bbox"`.
By default, this method expects ``(xmin, ymin, xmax, ymax)`` in absolute image coordinates.
- ``labels`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0-indexed ground truth
classes for the boxes.
- ``masks`` (:class:`~torch.Tensor`): boolean tensor of shape ``(num_boxes, image_height, image_width)``
containing boolean masks. Only required when `iou_type="segm"`.
- ``iscrowd`` (:class:`~torch.Tensor`): integer tensor of shape ``(num_boxes)`` containing 0/1 values indicating
whether the bounding box/masks indicate a crowd of objects. Value is optional, and if not provided it will
automatically be set to 0.
- ``area`` (:class:`~torch.Tensor`): float tensor of shape ``(num_boxes)`` containing the area of the object.
Value is optional, and if not provided will be automatically calculated based on the bounding box/masks
provided. Only affects which samples contribute to the `map_small`, `map_medium`, `map_large` values
As output of ``forward`` and ``compute`` the metric returns the following output:
- ``map_dict``: A dictionary containing the following key-values:
- map: (:class:`~torch.Tensor`), global mean average precision which by default is defined as mAP50-95 e.g. the
mean average precision for IoU thresholds 0.50, 0.55, 0.60, ..., 0.95 averaged over all classes and areas. If
the IoU thresholds are changed this value will be calculated with the new thresholds.
- map_small: (:class:`~torch.Tensor`), mean average precision for small objects (area < 32^2 pixels)
- map_medium:(:class:`~torch.Tensor`), mean average precision for medium objects (32^2 pixels < area < 96^2
pixels)
- map_large: (:class:`~torch.Tensor`), mean average precision for large objects (area > 96^2 pixels)
- mar_{mdt[0]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[0]` (default 1)
detection per image
- mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[1]` (default 10)
detection per image
- mar_{mdt[1]}: (:class:`~torch.Tensor`), mean average recall for `max_detection_thresholds[2]` (default 100)
detection per image
- mar_small: (:class:`~torch.Tensor`), mean average recall for small objects (area < 32^2 pixels)
- mar_medium: (:class:`~torch.Tensor`), mean average recall for medium objects (32^2 pixels < area < 96^2
pixels)
- mar_large: (:class:`~torch.Tensor`), mean average recall for large objects (area > 96^2 pixels)
- map_50: (:class:`~torch.Tensor`) (-1 if 0.5 not in the list of iou thresholds), mean average precision at
IoU=0.50
- map_75: (:class:`~torch.Tensor`) (-1 if 0.75 not in the list of iou thresholds), mean average precision at
IoU=0.75
- map_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average precision per
observed class
- mar_{mdt[2]}_per_class: (:class:`~torch.Tensor`) (-1 if class metrics are disabled), mean average recall for
`max_detection_thresholds[2]` (default 100) detections per image per observed class
- classes (:class:`~torch.Tensor`), list of all observed classes
For an example on how to use this metric check the `torchmetrics mAP example`_.
.. attention::
The ``map`` score is calculated with @[ IoU=self.iou_thresholds | area=all | max_dets=max_detection_thresholds ]
e.g. the mean average precision for IoU thresholds 0.50, 0.55, 0.60, ..., 0.95 averaged over all classes and
all areas and all max detections per image. If the IoU thresholds are changed this value will be calculated with
the new thresholds.
**Caution:** If the initialization parameters are changed, dictionary keys for mAR can change as well.
.. important::
This metric supports, at the moment, two different backends for the evaluation. The default backend is
``"pycocotools"``, which either require the official `pycocotools`_ implementation or this
`fork of pycocotools`_ to be installed. We recommend using the fork as it is better maintained and easily
available to install via pip: `pip install pycocotools`. It is also this fork that will be installed if you
install ``torchmetrics[detection]``. The second backend is the `faster-coco-eval`_ implementation, which can be
installed with ``pip install faster-coco-eval``. This implementation is a maintained open-source implementation
that is faster and corrects certain corner cases that the official implementation has. Our own testing has shown
that the results are identical to the official implementation. Regardless of the backend we also require you to
have `torchvision` version 0.8.0 or newer installed. Please install with ``pip install torchvision>=0.8`` or
``pip install torchmetrics[detection]``.
Args:
box_format:
Input format of given boxes. Supported formats are:
- 'xyxy': boxes are represented via corners, x1, y1 being top left and x2, y2 being bottom right.
- 'xywh' : boxes are represented via corner, width and height, x1, y2 being top left, w, h being
width and height. This is the default format used by pycoco and all input formats will be converted
to this.
- 'cxcywh': boxes are represented via centre, width and height, cx, cy being center of box, w, h being
width and height.
iou_type:
Type of input (either masks or bounding-boxes) used for computing IOU. Supported IOU types are
``"bbox"`` or ``"segm"`` or both as a tuple.
iou_thresholds:
IoU thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0.5,...,0.95]``
with step ``0.05``. Else provide a list of floats.
rec_thresholds:
Recall thresholds for evaluation. If set to ``None`` it corresponds to the stepped range ``[0,...,1]``
with step ``0.01``. Else provide a list of floats.
max_detection_thresholds:
Thresholds on max detections per image. If set to `None` will use thresholds ``[1, 10, 100]``.
Else, please provide a list of ints of length 3, which is the only supported length by both backends.
class_metrics:
Option to enable per-class metrics for mAP and mAR_100. Has a performance impact that scales linearly with
the number of classes in the dataset.
extended_summary:
Option to enable extended summary with additional metrics including IOU, precision and recall. The output
dictionary will contain the following extra key-values:
- ``ious``: a dictionary containing the IoU values for every image/class combination e.g.
``ious[(0,0)]`` would contain the IoU for image 0 and class 0. Each value is a tensor with shape
``(n,m)`` where ``n`` is the number of detections and ``m`` is the number of ground truth boxes for
that image/class combination.
- ``precision``: a tensor of shape ``(TxRxKxAxM)`` containing the precision values. Here ``T`` is the
number of IoU thresholds, ``R`` is the number of recall thresholds, ``K`` is the number of classes,
``A`` is the number of areas and ``M`` is the number of max detections per image.
- ``recall``: a tensor of shape ``(TxKxAxM)`` containing the recall values. Here ``T`` is the number of
IoU thresholds, ``K`` is the number of classes, ``A`` is the number of areas and ``M`` is the number
of max detections per image.
- ``scores``: a tensor of shape ``(TxRxKxAxM)`` containing the confidence scores. Here ``T`` is the
number of IoU thresholds, ``R`` is the number of recall thresholds, ``K`` is the number of classes,
``A`` is the number of areas and ``M`` is the number of max detections per image.
average:
Method for averaging scores over labels. Choose between "``"macro"`` and ``"micro"``.
backend:
Backend to use for the evaluation. Choose between ``"pycocotools"`` and ``"faster_coco_eval"``.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Raises:
ModuleNotFoundError:
If ``pycocotools`` is not installed
ModuleNotFoundError:
If ``torchvision`` is not installed or version installed is lower than 0.8.0
ValueError:
If ``box_format`` is not one of ``"xyxy"``, ``"xywh"`` or ``"cxcywh"``
ValueError:
If ``iou_type`` is not one of ``"bbox"`` or ``"segm"``
ValueError:
If ``iou_thresholds`` is not None or a list of floats
ValueError:
If ``rec_thresholds`` is not None or a list of floats
ValueError:
If ``max_detection_thresholds`` is not None or a list of ints
ValueError:
If ``class_metrics`` is not a boolean
Example::
Basic example for when `iou_type="bbox"`. In this case the ``boxes`` key is required in the input dictionaries,
in addition to the ``scores`` and ``labels`` keys.
>>> from torch import tensor
>>> from torchmetrics.detection import MeanAveragePrecision
>>> preds = [
... dict(
... boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
... scores=tensor([0.536]),
... labels=tensor([0]),
... )
... ]
>>> target = [
... dict(
... boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
... labels=tensor([0]),
... )
... ]
>>> metric = MeanAveragePrecision(iou_type="bbox")
>>> metric.update(preds, target)
>>> from pprint import pprint
>>> pprint(metric.compute())
{'classes': tensor(0, dtype=torch.int32),
'map': tensor(0.6000),
'map_50': tensor(1.),
'map_75': tensor(1.),
'map_large': tensor(0.6000),
'map_medium': tensor(-1.),
'map_per_class': tensor(-1.),
'map_small': tensor(-1.),
'mar_1': tensor(0.6000),
'mar_10': tensor(0.6000),
'mar_100': tensor(0.6000),
'mar_100_per_class': tensor(-1.),
'mar_large': tensor(0.6000),
'mar_medium': tensor(-1.),
'mar_small': tensor(-1.)}
Example::
Basic example for when `iou_type="segm"`. In this case the ``masks`` key is required in the input dictionaries,
in addition to the ``scores`` and ``labels`` keys.
>>> from torch import tensor
>>> from torchmetrics.detection import MeanAveragePrecision
>>> mask_pred = [
... [0, 0, 0, 0, 0],
... [0, 0, 1, 1, 0],
... [0, 0, 1, 1, 0],
... [0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0],
... ]
>>> mask_tgt = [
... [0, 0, 0, 0, 0],
... [0, 0, 1, 0, 0],
... [0, 0, 1, 1, 0],
... [0, 0, 1, 0, 0],
... [0, 0, 0, 0, 0],
... ]
>>> preds = [
... dict(
... masks=tensor([mask_pred], dtype=torch.bool),
... scores=tensor([0.536]),
... labels=tensor([0]),
... )
... ]
>>> target = [
... dict(
... masks=tensor([mask_tgt], dtype=torch.bool),
... labels=tensor([0]),
... )
... ]
>>> metric = MeanAveragePrecision(iou_type="segm")
>>> metric.update(preds, target)
>>> from pprint import pprint
>>> pprint(metric.compute())
{'classes': tensor(0, dtype=torch.int32),
'map': tensor(0.2000),
'map_50': tensor(1.),
'map_75': tensor(0.),
'map_large': tensor(-1.),
'map_medium': tensor(-1.),
'map_per_class': tensor(-1.),
'map_small': tensor(0.2000),
'mar_1': tensor(0.2000),
'mar_10': tensor(0.2000),
'mar_100': tensor(0.2000),
'mar_100_per_class': tensor(-1.),
'mar_large': tensor(-1.),
'mar_medium': tensor(-1.),
'mar_small': tensor(0.2000)}
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = True
full_state_update: bool = True
plot_lower_bound: float = 0.0
plot_upper_bound: float = 1.0
detection_box: List[Tensor]
detection_mask: List[Tensor]
detection_scores: List[Tensor]
detection_labels: List[Tensor]
groundtruth_box: List[Tensor]
groundtruth_mask: List[Tensor]
groundtruth_labels: List[Tensor]
groundtruth_crowds: List[Tensor]
groundtruth_area: List[Tensor]
warn_on_many_detections: bool = True
__jit_unused_properties__: ClassVar[list[str]] = [
"is_differentiable",
"higher_is_better",
"plot_lower_bound",
"plot_upper_bound",
"plot_legend_name",
"metric_state",
"_update_called",
# below is added for specifically for this metric
"coco",
"cocoeval",
"mask_utils",
]
def __init__(
self,
box_format: Literal["xyxy", "xywh", "cxcywh"] = "xyxy",
iou_type: Union[Literal["bbox", "segm"], tuple[str]] = "bbox",
iou_thresholds: Optional[list[float]] = None,
rec_thresholds: Optional[list[float]] = None,
max_detection_thresholds: Optional[list[int]] = None,
class_metrics: bool = False,
extended_summary: bool = False,
average: Literal["macro", "micro"] = "macro",
backend: Literal["pycocotools", "faster_coco_eval"] = "pycocotools",
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if not (_PYCOCOTOOLS_AVAILABLE or _FASTER_COCO_EVAL_AVAILABLE):
raise ModuleNotFoundError(
"`MAP` metric requires that `pycocotools` or `faster-coco-eval` installed."
" Please install with `pip install pycocotools` or `pip install faster-coco-eval` or"
" `pip install torchmetrics[detection]`."
)
if not _TORCHVISION_AVAILABLE:
raise ModuleNotFoundError(
f"Metric `{self._iou_type.upper()}` requires that `torchvision` is installed."
" Please install with `pip install torchmetrics[detection]`."
)
allowed_box_formats = ("xyxy", "xywh", "cxcywh")
if box_format not in allowed_box_formats:
raise ValueError(f"Expected argument `box_format` to be one of {allowed_box_formats} but got {box_format}")
self.box_format = box_format
self.iou_type = _validate_iou_type_arg(iou_type)
if iou_thresholds is not None and not isinstance(iou_thresholds, list):
raise ValueError(
f"Expected argument `iou_thresholds` to either be `None` or a list of floats but got {iou_thresholds}"
)
self.iou_thresholds = iou_thresholds or torch.linspace(0.5, 0.95, round((0.95 - 0.5) / 0.05) + 1).tolist()
if rec_thresholds is not None and not isinstance(rec_thresholds, list):
raise ValueError(
f"Expected argument `rec_thresholds` to either be `None` or a list of floats but got {rec_thresholds}"
)
self.rec_thresholds = rec_thresholds or torch.linspace(0.0, 1.00, round(1.00 / 0.01) + 1).tolist()
if max_detection_thresholds is not None and not isinstance(max_detection_thresholds, list):
raise ValueError(
f"Expected argument `max_detection_thresholds` to either be `None` or a list of ints"
f" but got {max_detection_thresholds}"
)
if max_detection_thresholds is not None and len(max_detection_thresholds) != 3:
raise ValueError(
"When providing a list of max detection thresholds it should have length 3."
f" Got value {len(max_detection_thresholds)}"
)
max_det_threshold, _ = torch.sort(torch.tensor(max_detection_thresholds or [1, 10, 100], dtype=torch.int))
self.max_detection_thresholds = max_det_threshold.tolist()
if not isinstance(class_metrics, bool):
raise ValueError("Expected argument `class_metrics` to be a boolean")
self.class_metrics = class_metrics
if not isinstance(extended_summary, bool):
raise ValueError("Expected argument `extended_summary` to be a boolean")
self.extended_summary = extended_summary
if average not in ("macro", "micro"):
raise ValueError(f"Expected argument `average` to be one of ('macro', 'micro') but got {average}")
self.average = average
if backend not in ("pycocotools", "faster_coco_eval"):
raise ValueError(
f"Expected argument `backend` to be one of ('pycocotools', 'faster_coco_eval') but got {backend}"
)
self.backend = backend
self.add_state("detection_box", default=[], dist_reduce_fx=None)
self.add_state("detection_mask", default=[], dist_reduce_fx=None)
self.add_state("detection_scores", default=[], dist_reduce_fx=None)
self.add_state("detection_labels", default=[], dist_reduce_fx=None)
self.add_state("groundtruth_box", default=[], dist_reduce_fx=None)
self.add_state("groundtruth_mask", default=[], dist_reduce_fx=None)
self.add_state("groundtruth_labels", default=[], dist_reduce_fx=None)
self.add_state("groundtruth_crowds", default=[], dist_reduce_fx=None)
self.add_state("groundtruth_area", default=[], dist_reduce_fx=None)
@property
def coco(self) -> object:
"""Returns the coco module for the given backend, done in this way to make metric picklable."""
coco, _, _ = _load_backend_tools(self.backend)
return coco
@property
def cocoeval(self) -> object:
"""Returns the coco eval module for the given backend, done in this way to make metric picklable."""
_, cocoeval, _ = _load_backend_tools(self.backend)
return cocoeval
@property
def mask_utils(self) -> object:
"""Returns the mask utils object for the given backend, done in this way to make metric picklable."""
_, _, mask_utils = _load_backend_tools(self.backend)
return mask_utils
def update(self, preds: list[dict[str, Tensor]], target: list[dict[str, Tensor]]) -> None:
"""Update metric state.
Raises:
ValueError:
If ``preds`` is not of type (:class:`~List[Dict[str, Tensor]]`)
ValueError:
If ``target`` is not of type ``List[Dict[str, Tensor]]``
ValueError:
If ``preds`` and ``target`` are not of the same length
ValueError:
If any of ``preds.boxes``, ``preds.scores`` and ``preds.labels`` are not of the same length
ValueError:
If any of ``target.boxes`` and ``target.labels`` are not of the same length
ValueError:
If any box is not type float and of length 4
ValueError:
If any class is not type int and of length 1
ValueError:
If any score is not type float and of length 1
"""
_input_validator(preds, target, iou_type=self.iou_type) # type: ignore[arg-type]
for item in preds:
bbox_detection, mask_detection = self._get_safe_item_values(item, warn=self.warn_on_many_detections)
if bbox_detection is not None:
self.detection_box.append(bbox_detection)
if mask_detection is not None:
self.detection_mask.append(mask_detection) # type: ignore[arg-type]
self.detection_labels.append(item["labels"])
self.detection_scores.append(item["scores"])
for item in target:
bbox_groundtruth, mask_groundtruth = self._get_safe_item_values(item)
if bbox_groundtruth is not None:
self.groundtruth_box.append(bbox_groundtruth)
if mask_groundtruth is not None:
self.groundtruth_mask.append(mask_groundtruth) # type: ignore[arg-type]
self.groundtruth_labels.append(item["labels"])
self.groundtruth_crowds.append(item.get("iscrowd", torch.zeros_like(item["labels"])))
self.groundtruth_area.append(item.get("area", torch.zeros_like(item["labels"])))
def compute(self) -> dict:
"""Computes the metric."""
coco_preds, coco_target = self._get_coco_datasets(average=self.average)
result_dict = {}
with contextlib.redirect_stdout(io.StringIO()):
for i_type in self.iou_type:
prefix = "" if len(self.iou_type) == 1 else f"{i_type}_"
if len(self.iou_type) > 1:
# the area calculation is different for bbox and segm and therefore to get the small, medium and
# large values correct we need to dynamically change the area attribute of the annotations
for anno in coco_preds.dataset["annotations"]:
anno["area"] = anno[f"area_{i_type}"]
if len(coco_preds.imgs) == 0 or len(coco_target.imgs) == 0:
result_dict.update(self._coco_stats_to_tensor_dict(12 * [-1.0], prefix=prefix))
else:
coco_eval = self.cocoeval(coco_target, coco_preds, iouType=i_type) # type: ignore[operator]
coco_eval.params.iouThrs = np.array(self.iou_thresholds, dtype=np.float64)
coco_eval.params.recThrs = np.array(self.rec_thresholds, dtype=np.float64)
coco_eval.params.maxDets = self.max_detection_thresholds
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
stats = coco_eval.stats
result_dict.update(self._coco_stats_to_tensor_dict(stats, prefix=prefix))
summary = {}
if self.extended_summary:
summary = {
f"{prefix}ious": apply_to_collection(
coco_eval.ious, np.ndarray, lambda x: torch.tensor(x, dtype=torch.float32)
),
f"{prefix}precision": torch.tensor(coco_eval.eval["precision"]),
f"{prefix}recall": torch.tensor(coco_eval.eval["recall"]),
f"{prefix}scores": torch.tensor(coco_eval.eval["scores"]),
}
result_dict.update(summary)
# if class mode is enabled, evaluate metrics per class
if self.class_metrics:
# regardless of average method, reinitialize dataset to get rid of internal state which can
# lead to wrong results when evaluating per class
coco_preds, coco_target = self._get_coco_datasets(average="macro")
coco_eval = self.cocoeval(coco_target, coco_preds, iouType=i_type) # type: ignore[operator]
coco_eval.params.iouThrs = np.array(self.iou_thresholds, dtype=np.float64)
coco_eval.params.recThrs = np.array(self.rec_thresholds, dtype=np.float64)
coco_eval.params.maxDets = self.max_detection_thresholds
map_per_class_list = []
mar_per_class_list = []
for class_id in self._get_classes():
coco_eval.params.catIds = [class_id]
with contextlib.redirect_stdout(io.StringIO()):
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
class_stats = coco_eval.stats
map_per_class_list.append(torch.tensor([class_stats[0]]))
mar_per_class_list.append(torch.tensor([class_stats[8]]))
map_per_class_values = torch.tensor(map_per_class_list, dtype=torch.float32)
mar_per_class_values = torch.tensor(mar_per_class_list, dtype=torch.float32)
else:
map_per_class_values = torch.tensor([-1], dtype=torch.float32)
mar_per_class_values = torch.tensor([-1], dtype=torch.float32)
prefix = "" if len(self.iou_type) == 1 else f"{i_type}_"
result_dict.update(
{
f"{prefix}map_per_class": map_per_class_values,
f"{prefix}mar_{self.max_detection_thresholds[-1]}_per_class": mar_per_class_values,
},
)
result_dict.update({"classes": torch.tensor(self._get_classes(), dtype=torch.int32)})
return result_dict
def _get_coco_datasets(self, average: Literal["macro", "micro"]) -> tuple[object, object]:
"""Returns the coco datasets for the target and the predictions."""
if average == "micro":
# for micro averaging we set everything to be the same class
groundtruth_labels = apply_to_collection(self.groundtruth_labels, Tensor, lambda x: torch.zeros_like(x))
detection_labels = apply_to_collection(self.detection_labels, Tensor, lambda x: torch.zeros_like(x))
else:
groundtruth_labels = self.groundtruth_labels
detection_labels = self.detection_labels
coco_target, coco_preds = self.coco(), self.coco() # type: ignore[operator]
coco_target.dataset = self._get_coco_format(
labels=groundtruth_labels,
boxes=self.groundtruth_box if len(self.groundtruth_box) > 0 else None,
masks=self.groundtruth_mask if len(self.groundtruth_mask) > 0 else None,
crowds=self.groundtruth_crowds,
area=self.groundtruth_area,
)
coco_preds.dataset = self._get_coco_format(
labels=detection_labels,
boxes=self.detection_box if len(self.detection_box) > 0 else None,
masks=self.detection_mask if len(self.detection_mask) > 0 else None,
scores=self.detection_scores,
)
with contextlib.redirect_stdout(io.StringIO()):
coco_target.createIndex()
coco_preds.createIndex()
return coco_preds, coco_target
def _coco_stats_to_tensor_dict(self, stats: list[float], prefix: str) -> dict[str, Tensor]:
"""Converts the output of COCOeval.stats to a dict of tensors."""
mdt = self.max_detection_thresholds
return {
f"{prefix}map": torch.tensor([stats[0]], dtype=torch.float32),
f"{prefix}map_50": torch.tensor([stats[1]], dtype=torch.float32),
f"{prefix}map_75": torch.tensor([stats[2]], dtype=torch.float32),
f"{prefix}map_small": torch.tensor([stats[3]], dtype=torch.float32),
f"{prefix}map_medium": torch.tensor([stats[4]], dtype=torch.float32),
f"{prefix}map_large": torch.tensor([stats[5]], dtype=torch.float32),
f"{prefix}mar_{mdt[0]}": torch.tensor([stats[6]], dtype=torch.float32),
f"{prefix}mar_{mdt[1]}": torch.tensor([stats[7]], dtype=torch.float32),
f"{prefix}mar_{mdt[2]}": torch.tensor([stats[8]], dtype=torch.float32),
f"{prefix}mar_small": torch.tensor([stats[9]], dtype=torch.float32),
f"{prefix}mar_medium": torch.tensor([stats[10]], dtype=torch.float32),
f"{prefix}mar_large": torch.tensor([stats[11]], dtype=torch.float32),
}
@staticmethod
def coco_to_tm(
coco_preds: str,
coco_target: str,
iou_type: Union[Literal["bbox", "segm"], list[str]] = "bbox",
backend: Literal["pycocotools", "faster_coco_eval"] = "pycocotools",
) -> tuple[list[dict[str, Tensor]], list[dict[str, Tensor]]]:
"""Utility function for converting .json coco format files to the input format of this metric.
The function accepts a file for the predictions and a file for the target in coco format and converts them to
a list of dictionaries containing the boxes, labels and scores in the input format of this metric.
Args:
coco_preds: Path to the json file containing the predictions in coco format
coco_target: Path to the json file containing the targets in coco format
iou_type: Type of input, either `bbox` for bounding boxes or `segm` for segmentation masks
backend: Backend to use for the conversion. Either `pycocotools` or `faster_coco_eval`.
Returns:
A tuple containing the predictions and targets in the input format of this metric. Each element of the
tuple is a list of dictionaries containing the boxes, labels and scores.
Example:
>>> # File formats are defined at https://cocodataset.org/#format-data
>>> # Example files can be found at
>>> # https://github.com/cocodataset/cocoapi/tree/master/results
>>> from torchmetrics.detection import MeanAveragePrecision
>>> preds, target = MeanAveragePrecision.coco_to_tm(
... "instances_val2014_fakebbox100_results.json",
... "val2014_fake_eval_res.txt.json"
... iou_type="bbox"
... ) # doctest: +SKIP
"""
iou_type = _validate_iou_type_arg(iou_type) # type: ignore[arg-type]
coco, _, _ = _load_backend_tools(backend)
with contextlib.redirect_stdout(io.StringIO()):
gt = coco(coco_target) # type: ignore[operator]
dt = gt.loadRes(coco_preds)
gt_dataset = gt.dataset["annotations"]
dt_dataset = dt.dataset["annotations"]
target: dict = {}
for t in gt_dataset:
if t["image_id"] not in target:
target[t["image_id"]] = {
"labels": [],
"iscrowd": [],
"area": [],
}
if "bbox" in iou_type:
target[t["image_id"]]["boxes"] = []
if "segm" in iou_type:
target[t["image_id"]]["masks"] = []
if "bbox" in iou_type:
target[t["image_id"]]["boxes"].append(t["bbox"])
if "segm" in iou_type:
target[t["image_id"]]["masks"].append(gt.annToMask(t))
target[t["image_id"]]["labels"].append(t["category_id"])
target[t["image_id"]]["iscrowd"].append(t["iscrowd"])
target[t["image_id"]]["area"].append(t["area"])
preds: dict = {}
for p in dt_dataset:
if p["image_id"] not in preds:
preds[p["image_id"]] = {"scores": [], "labels": []}
if "bbox" in iou_type:
preds[p["image_id"]]["boxes"] = []
if "segm" in iou_type:
preds[p["image_id"]]["masks"] = []
if "bbox" in iou_type:
preds[p["image_id"]]["boxes"].append(p["bbox"])
if "segm" in iou_type:
preds[p["image_id"]]["masks"].append(gt.annToMask(p))
preds[p["image_id"]]["scores"].append(p["score"])
preds[p["image_id"]]["labels"].append(p["category_id"])
for k in target: # add empty predictions for images without predictions
if k not in preds:
preds[k] = {"scores": [], "labels": []}
if "bbox" in iou_type:
preds[k]["boxes"] = []
if "segm" in iou_type:
preds[k]["masks"] = []
batched_preds, batched_target = [], []
for key in target:
bp = {
"scores": torch.tensor(preds[key]["scores"], dtype=torch.float32),
"labels": torch.tensor(preds[key]["labels"], dtype=torch.int32),
}
if "bbox" in iou_type:
bp["boxes"] = torch.tensor(np.array(preds[key]["boxes"]), dtype=torch.float32)
if "segm" in iou_type:
bp["masks"] = torch.tensor(np.array(preds[key]["masks"]), dtype=torch.uint8)
batched_preds.append(bp)
bt = {
"labels": torch.tensor(target[key]["labels"], dtype=torch.int32),
"iscrowd": torch.tensor(target[key]["iscrowd"], dtype=torch.int32),
"area": torch.tensor(target[key]["area"], dtype=torch.float32),
}
if "bbox" in iou_type:
bt["boxes"] = torch.tensor(target[key]["boxes"], dtype=torch.float32)
if "segm" in iou_type:
bt["masks"] = torch.tensor(np.array(target[key]["masks"]), dtype=torch.uint8)
batched_target.append(bt)
return batched_preds, batched_target
def tm_to_coco(self, name: str = "tm_map_input") -> None:
"""Utility function for converting the input for this metric to coco format and saving it to a json file.
This function should be used after calling `.update(...)` or `.forward(...)` on all data that should be written
to the file, as the input is then internally cached. The function then converts to information to coco format
a writes it to json files.
Args:
name: Name of the output file, which will be appended with "_preds.json" and "_target.json"
Example:
>>> from torch import tensor
>>> from torchmetrics.detection import MeanAveragePrecision
>>> preds = [
... dict(
... boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
... scores=tensor([0.536]),
... labels=tensor([0]),
... )
... ]
>>> target = [
... dict(
... boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
... labels=tensor([0]),
... )
... ]
>>> metric = MeanAveragePrecision(iou_type="bbox")
>>> metric.update(preds, target)
>>> metric.tm_to_coco("tm_map_input")
"""
target_dataset = self._get_coco_format(
labels=self.groundtruth_labels,
boxes=self.groundtruth_box if len(self.groundtruth_box) > 0 else None,
masks=self.groundtruth_mask if len(self.groundtruth_mask) > 0 else None,
crowds=self.groundtruth_crowds,
area=self.groundtruth_area,
)
preds_dataset = self._get_coco_format(
labels=self.detection_labels,
boxes=self.detection_box if len(self.detection_box) > 0 else None,
masks=self.detection_mask if len(self.detection_mask) > 0 else None,
scores=self.detection_scores,
)
if "segm" in self.iou_type:
# the rle masks needs to be decoded to be written to a file
preds_dataset["annotations"] = apply_to_collection(
preds_dataset["annotations"], dtype=bytes, function=lambda x: x.decode("utf-8")
)
preds_dataset["annotations"] = apply_to_collection(
preds_dataset["annotations"],
dtype=np.uint32,
function=lambda x: int(x),
)
target_dataset = apply_to_collection(target_dataset, dtype=bytes, function=lambda x: x.decode("utf-8"))
preds_json = json.dumps(preds_dataset["annotations"], indent=4)
target_json = json.dumps(target_dataset, indent=4)
with open(f"{name}_preds.json", "w") as f:
f.write(preds_json)
with open(f"{name}_target.json", "w") as f:
f.write(target_json)
def _get_safe_item_values(
self, item: dict[str, Any], warn: bool = False
) -> tuple[Optional[Tensor], Optional[tuple]]:
"""Convert and return the boxes or masks from the item depending on the iou_type.
Args:
item: input dictionary containing the boxes or masks
warn: whether to warn if the number of boxes or masks exceeds the max_detection_thresholds
Returns:
boxes or masks depending on the iou_type
"""
from torchvision.ops import box_convert
output = [None, None]
if "bbox" in self.iou_type:
boxes = _fix_empty_tensors(item["boxes"])
if boxes.numel() > 0:
boxes = box_convert(boxes, in_fmt=self.box_format, out_fmt="xywh")
output[0] = boxes # type: ignore[call-overload]
if "segm" in self.iou_type:
masks = []
for i in item["masks"].cpu().numpy():
rle = self.mask_utils.encode(np.asfortranarray(i))
masks.append((tuple(rle["size"]), rle["counts"]))
output[1] = tuple(masks) # type: ignore[call-overload]
if warn and (
(output[0] is not None and len(output[0]) > self.max_detection_thresholds[-1])
or (output[1] is not None and len(output[1]) > self.max_detection_thresholds[-1])
):
_warning_on_too_many_detections(self.max_detection_thresholds[-1])
return output # type: ignore[return-value]
def _get_classes(self) -> list:
"""Return a list of unique classes found in ground truth and detection data."""
if len(self.detection_labels) > 0 or len(self.groundtruth_labels) > 0:
return torch.cat(self.detection_labels + self.groundtruth_labels).unique().cpu().tolist()
return []
def _get_coco_format(
self,
labels: List[Tensor],
boxes: Optional[List[Tensor]] = None,
masks: Optional[List[Tensor]] = None,
scores: Optional[List[Tensor]] = None,
crowds: Optional[List[Tensor]] = None,
area: Optional[List[Tensor]] = None,
) -> dict:
"""Transforms and returns all cached targets or predictions in COCO format.
Format is defined at
https://cocodataset.org/#format-data
"""
images = []
annotations = []
annotation_id = 1 # has to start with 1, otherwise COCOEval results are wrong
for image_id, image_labels in enumerate(labels):
if boxes is not None:
image_boxes = boxes[image_id]
image_boxes = image_boxes.cpu().tolist()
if masks is not None:
image_masks = masks[image_id]
if len(image_masks) == 0 and boxes is None:
continue
image_labels = image_labels.cpu().tolist() # type: ignore[assignment]
images.append({"id": image_id})
if "segm" in self.iou_type and len(image_masks) > 0:
images[-1]["height"], images[-1]["width"] = image_masks[0][0][0], image_masks[0][0][1] # type: ignore[assignment]
for k, image_label in enumerate(image_labels):
if boxes is not None:
image_box = image_boxes[k]
if masks is not None and len(image_masks) > 0:
image_mask = image_masks[k]
image_mask = {"size": image_mask[0], "counts": image_mask[1]}
if "bbox" in self.iou_type and len(image_box) != 4:
raise ValueError(
f"Invalid input box of sample {image_id}, element {k} (expected 4 values, got {len(image_box)})"
)
if not isinstance(image_label, int):
raise ValueError(
f"Invalid input class of sample {image_id}, element {k}"
f" (expected value of type integer, got type {type(image_label)})"
)
area_stat_box = None
area_stat_mask = None
if area is not None and area[image_id][k].cpu().tolist() > 0: # type: ignore[operator]
area_stat = area[image_id][k].cpu().tolist()
else:
area_stat = (
self.mask_utils.area(image_mask) if "segm" in self.iou_type else image_box[2] * image_box[3]
)
if len(self.iou_type) > 1:
area_stat_box = image_box[2] * image_box[3]
area_stat_mask = self.mask_utils.area(image_mask)
annotation = {
"id": annotation_id,
"image_id": image_id,
"area": area_stat,
"category_id": image_label,
"iscrowd": crowds[image_id][k].cpu().tolist() if crowds is not None else 0,
}
if area_stat_box is not None:
annotation["area_bbox"] = area_stat_box
annotation["area_segm"] = area_stat_mask
if boxes is not None:
annotation["bbox"] = image_box
if masks is not None:
annotation["segmentation"] = image_mask
if scores is not None:
score = scores[image_id][k].cpu().tolist()
if not isinstance(score, float):
raise ValueError(
f"Invalid input score of sample {image_id}, element {k}"
f" (expected value of type float, got type {type(score)})"
)
annotation["score"] = score
annotations.append(annotation)
annotation_id += 1
classes = [{"id": i, "name": str(i)} for i in self._get_classes()]
return {"images": images, "annotations": annotations, "categories": classes}
def plot(
self, val: Optional[Union[dict[str, Tensor], Sequence[dict[str, Tensor]]]] = None, ax: Optional[_AX_TYPE] = None
) -> _PLOT_OUT_TYPE:
"""Plot a single or multiple values from the metric.
Args:
val: Either a single result from calling `metric.forward` or `metric.compute` or a list of these results.
If no value is provided, will automatically call `metric.compute` and plot that result.
ax: An matplotlib axis object. If provided will add plot to that axis
Returns:
Figure object and Axes object
Raises:
ModuleNotFoundError:
If `matplotlib` is not installed
.. plot::
:scale: 75
>>> from torch import tensor
>>> from torchmetrics.detection.mean_ap import MeanAveragePrecision
>>> preds = [dict(
... boxes=tensor([[258.0, 41.0, 606.0, 285.0]]),
... scores=tensor([0.536]),
... labels=tensor([0]),
... )]
>>> target = [dict(
... boxes=tensor([[214.0, 41.0, 562.0, 285.0]]),
... labels=tensor([0]),
... )]
>>> metric = MeanAveragePrecision()
>>> metric.update(preds, target)
>>> fig_, ax_ = metric.plot()
.. plot::
:scale: 75
>>> # Example plotting multiple values
>>> import torch
>>> from torchmetrics.detection.mean_ap import MeanAveragePrecision