-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
123 lines (104 loc) · 4.24 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
# TODO: support fuse_conv_bn, visualization, and format_only
def parse_args():
parser = argparse.ArgumentParser(
description='MMSeg test (and eval) a model')
parser.add_argument('config', help='train config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument(
'--work-dir',
help=('if specified, the evaluation metric results will be dumped'
'into the directory as json'))
parser.add_argument(
'--out',
type=str,
help='The directory to save output prediction for offline evaluation')
parser.add_argument(
'--show', action='store_true', help='show prediction results')
parser.add_argument(
'--show-dir',
help='directory where painted images will be saved. '
'If specified, it will be automatically saved '
'to the work_dir/timestamp/show_dir')
parser.add_argument(
'--wait-time', type=float, default=2, help='the interval of show (s)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument(
'--tta', action='store_true', help='Test time augmentation')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def trigger_visualization_hook(cfg, args):
default_hooks = cfg.default_hooks
if 'visualization' in default_hooks:
visualization_hook = default_hooks['visualization']
# Turn on visualization
visualization_hook['draw'] = True
if args.show:
visualization_hook['show'] = True
visualization_hook['wait_time'] = args.wait_time
if args.show_dir:
visualizer = cfg.visualizer
visualizer['save_dir'] = args.show_dir
else:
raise RuntimeError(
'VisualizationHook must be included in default_hooks.'
'refer to usage '
'"visualization=dict(type=\'VisualizationHook\')"')
return cfg
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
cfg.launcher = args.launcher
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
cfg.load_from = args.checkpoint
if args.show or args.show_dir:
cfg = trigger_visualization_hook(cfg, args)
if args.tta:
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
cfg.tta_model.module = cfg.model
cfg.model = cfg.tta_model
# add output_dir in metric
if args.out is not None:
cfg.test_evaluator['output_dir'] = args.out
cfg.test_evaluator['keep_results'] = True
# build the runner from config
runner = Runner.from_cfg(cfg)
# start testing
runner.test()
if __name__ == '__main__':
main()