-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
300 lines (233 loc) · 8.93 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the dataset for L0_SIGN model
"""
import os
import sys
import numpy as np
import json
import io
from sklearn.model_selection import StratifiedKFold
from tqdm import tqdm
import paddle
from pgl.utils.data import Dataset,Dataloader
import pgl
from pgl.utils.logger import log
def random_split(dataset, split_ratio=0.7, seed=2019, shuffle=True):
"""random splitter"""
np.random.seed(seed)
indices = list(range(len(dataset)))
np.random.shuffle(indices)
trn_split = int(split_ratio * len(dataset))
test_split = int(0.85 * len(dataset))
train_idx, test_idx, valid_idx = indices[:trn_split], indices[trn_split:test_split], indices[test_split:]
log.info("train_set : valid_set : test_set = %d : %d: %d" %
(len(train_idx), len(valid_idx), len(test_idx)))
return Subset(dataset, train_idx), Subset(dataset, valid_idx), Subset(dataset, test_idx)
class Subset(Dataset):
"""
Subset of a dataset at specified indices.
"""
def __init__(self, dataset, indices):
self.dataset = dataset
self.indices = indices
def __getitem__(self, idx):
"""getitem"""
return self.dataset[self.indices[idx]]
def __len__(self):
"""len"""
return len(self.indices)
class SIGNDataset(Dataset):
"""Dataset for Detecting Beneficial Feature Interactions for Recommender Systems (L0_SIGN)
Adapted from https://github.com/ruizhang-ai/SIGN-Detecting-Beneficial-Feature-Interactions-for-Recommender-Systems/data/ml-tag/ml-tag.data.
"""
def __init__(self,
data_path,
dataset_name,
pred_edges=1,
self_loop=True,
degree_as_nlabel=False):
self.data_path = data_path
self.dataset_name = dataset_name
self.pred_edges = pred_edges
self.self_loop = self_loop
self.degree_as_nlabel = degree_as_nlabel
self.graph_list = []
self.glabel_list = []
# global num
self.num_graph = 0 # total graphs number
self.num_feature = 0
self.n = 0 # total nodes number
self.m = 0 # total edges number
self._load_data()
def __len__(self):
"""return the number of graphs"""
return len(self.graph_list)
def __getitem__(self, idx):
"""getitem"""
return self.graph_list[idx], self.glabel_list[idx]
def read_data(self):
# handle node and class
filename = os.path.join(self.data_path, self.dataset_name,
"%s.data" % self.dataset_name)
log.info("loading data from %s" % filename)
node_list = []
label = []
max_node_index = 0
data_num = 0
with open(filename, 'r') as f:
for line in f:
data_num += 1
data = line.split()
# the first element is the label of the class
label.append(float(data[0]))
#the rest of the elements are the nodes
int_list = [int(data[i]) for i in range(len(data))[1:]]
node_list.append(int_list)
if max_node_index < max(int_list):
max_node_index = max(int_list)
if not self.pred_edges:
# pass
edge_list = []
sr_list = [] #sender_receiver_list, containing node index
for nodes in node_list:
edge_l, sr_l = self.construct_full_edge_list(nodes)
edge_list.append(edge_l)
# sr_list.append(sr_l)
# print('edge_l:',edge_l)
# print('sr_l:',sr_l)
# edge_list = [[[],[]] for _ in range(data_num)]
# sr_list = []
# # handle edges
# with open(self.edgefile, 'r') as f:
# for line in f:
# edge_info = line.split()
# node_index = int(edge_info[0])
# edge_list[node_index][0].append(int(edge_info[1]))
# edge_list[node_index][1].append(int(edge_info[2]))
else:
edge_list = []
sr_list = [] #sender_receiver_list, containing node index
for nodes in node_list:
edge_l, sr_l = self.construct_full_edge_list(nodes)
edge_list.append(edge_l)
sr_list.append(sr_l)
# print(label[0:10])
# print('==========='*10)
label = self.construct_one_hot_label(label) # 去掉
# print(label[0:10])
return node_list, edge_list, label, sr_list, max_node_index + 1, data_num
def construct_full_edge_list(self, nodes):
num_node = len(nodes)
edge_list = [[],[]] #first for sender, second for receiver
sender_receiver_list = []
for i in range(num_node):
for j in range(num_node)[i:]:
edge_list[0].append(i)
edge_list[1].append(j)
sender_receiver_list.append([nodes[i],nodes[j]])
return edge_list, sender_receiver_list
def construct_one_hot_label(self, label):
"""Convert an iterable of indices to one-hot encoded labels."""
nb_classes = int(max(label)) + 1
targets = np.array(label, dtype=np.int32).reshape(-1)
return np.eye(nb_classes)[targets]
def _load_data(self):
"""Loads dataset
"""
self.node, edge, label, self.sr_list, node_num, data_num = self.read_data()
self.num_graph = len(self.node)
self.num_feature = node_num
for i in tqdm(range(self.num_graph)):
# if int((i + 1) % 100000) == 0:
# log.info("processing graph %s" % (i + 1))
graph = dict()
edges = []
num_edges = 0
node_features = np.array(self.node[i],dtype='int32').reshape(len(self.node[i]),1)
num_nodes = len(self.node[i])
for u,v in zip(edge[i][0],edge[i][1]):
u_v = (u,v)
edges.append(u_v)
num_edges = len(edges)
self.glabel_list.append(label[i])
if self.pred_edges:
sr = self.sr_list[i] #the sender receiver list, stored in edge_attr
else:
sr = []
graph['node_attr'] = node_features
graph['num_nodes'] = num_nodes
graph['edge_attr'] = sr
graph['edges'] = edges
assert num_edges == len(edges)
g = pgl.Graph(
num_nodes=graph['num_nodes'],
edges=graph['edges'],
node_feat={'node_attr': graph['node_attr']},
edge_feat={'edge_attr': graph['edge_attr']})
self.graph_list.append(g)
# update statistics of graphs
self.n += graph['num_nodes']
self.m += num_edges
msg = "Finished loading data\n"
msg += """
num_graph:%d
num_feature:%d
nodes/graph:%d
num_edges:%d
""" %(
self.num_graph,
self.num_feature,
self.n/self.num_graph,
self.m
)
log.info(msg)
def collate_fn(batch_data):
graphs = []
labels = []
for g, l in batch_data:
graphs.append(g)
labels.append(l)
labels = np.array(labels, dtype="int64")
return graphs, labels
if __name__ == "__main__":
signdataset = SIGNDataset("./data/", "twitter", pred_edges=0)
train_ds,val_ds,test_ds = random_split(signdataset)
loader = Dataloader(
train_ds,
batch_size=3,
shuffle=False,
num_workers=1,
collate_fn=collate_fn)
cc = 0
for batch in loader:
g, label = batch
# g = pgl.Graph.batch(g).tensor()
print(label)
print(g.num_graph)
print('====='*20)
# print(g.edges)
print(g.graph_node_id)
print(g.node_feat['node_attr'])
print(g.edge_feat['edge_attr'])
# for data in g:
# print(data.edges)
# for data in g:
# print(data.node_feat['node_attr'])
# for data in g:
# print(data.edge_feat['edge_attr'])
cc += 1
if cc == 2:
break