You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on May 14, 2024. It is now read-only.
When using kohya-LoRA-trainer-XL.ipynb(https://colab.research.google.com/github/panguin6010/kohya_ss_google_colab/blob/master/kohya_ss_colab.ipynb),
the following error occurred:
If anyone knows the solution to this, please let me know.
what is "metadata"?
both the training images and their caption text files are directly uploaded to train_data_dir.
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /content/kohya-trainer/sdxl_train_network.py:174 in │
│ │
│ 171 │ args = train_util.read_config_from_file(args, parser) │
│ 172 │ │
│ 173 │ trainer = SdxlNetworkTrainer() │
│ ❱ 174 │ trainer.train(args) │
│ 175 │
│ │
│ /content/kohya-trainer/train_network.py:177 in train │
│ │
│ 174 │ │ │ │ │ } │
│ 175 │ │ │ │
│ 176 │ │ │ blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokeni │
│ ❱ 177 │ │ │ train_dataset_group = config_util.generate_dataset_group_by_blueprint(bluepr │
│ 178 │ │ else: │
│ 179 │ │ │ # use arbitrary dataset class │
│ 180 │ │ │ train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer) │
│ │
│ /content/kohya-trainer/library/config_util.py:426 in generate_dataset_group_by_blueprint │
│ │
│ 423 │ dataset_klass = FineTuningDataset │
│ 424 │ │
│ 425 │ subsets = [subset_klass(**asdict(subset_blueprint.params)) for subset_blueprint in d │
│ ❱ 426 │ dataset = dataset_klass(subsets=subsets, **asdict(dataset_blueprint.params)) │
│ 427 │ datasets.append(dataset) │
│ 428 │
│ 429 # print info │
│ │
│ /content/kohya-trainer/library/train_util.py:1477 in init │
│ │
│ 1474 │ │ │ │ with open(subset.metadata_file, "rt", encoding="utf-8") as f: │
│ 1475 │ │ │ │ │ metadata = json.load(f) │
│ 1476 │ │ │ else: │
│ ❱ 1477 │ │ │ │ raise ValueError(f"no metadata / メタデータファイルがありません: {subset │
│ 1478 │ │ │ │
│ 1479 │ │ │ if len(metadata) < 1: │
│ 1480 │ │ │ │ print(f"ignore subset with '{subset.metadata_file}': no image entries fo │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
ValueError: no metadata / メタデータファイルがありません: /content/LoRA/meta_lat.json
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /usr/local/bin/accelerate:8 in │
│ │
│ 5 from accelerate.commands.accelerate_cli import main │
│ 6 if name == 'main': │
│ 7 │ sys.argv[0] = re.sub(r'(-script.pyw|.exe)?$', '', sys.argv[0]) │
│ ❱ 8 │ sys.exit(main()) │
│ 9 │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/accelerate_cli.py:45 in main │
│ │
│ 42 │ │ exit(1) │
│ 43 │ │
│ 44 │ # Run │
│ ❱ 45 │ args.func(args) │
│ 46 │
│ 47 │
│ 48 if name == "main": │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/launch.py:918 in launch_command │
│ │
│ 915 │ elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMA │
│ 916 │ │ sagemaker_launcher(defaults, args) │
│ 917 │ else: │
│ ❱ 918 │ │ simple_launcher(args) │
│ 919 │
│ 920 │
│ 921 def main(): │
│ │
│ /usr/local/lib/python3.10/dist-packages/accelerate/commands/launch.py:580 in simple_launcher │
│ │
│ 577 │ process.wait() │
│ 578 │ if process.returncode != 0: │
│ 579 │ │ if not args.quiet: │
│ ❱ 580 │ │ │ raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) │
│ 581 │ │ else: │
│ 582 │ │ │ sys.exit(1) │
│ 583 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
CalledProcessError: Command '['/usr/bin/python3', 'sdxl_train_network.py',
'--sample_prompts=/content/LoRA/config/sample_prompt.toml',
'--config_file=/content/LoRA/config/config_file.toml',
'--wandb_api_key=???????????']' returned non-zero exit status 1.
and following is training-config
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[sdxl_arguments]
cache_text_encoder_outputs = true
no_half_vae = true
min_timestep = 0
max_timestep = 1000
shuffle_caption = false
lowram = true
[model_arguments]
pretrained_model_name_or_path = "Linaqruf/animagine-xl"
vae = "/content/vae/sdxl_vae.safetensors"
[dataset_arguments]
debug_dataset = false
in_json = "/content/LoRA/meta_lat.json"
train_data_dir = "/content/drive/MyDrive/kohya_ss/train_images/scheiren/10_scheiren"
dataset_repeats = 10
keep_tokens = 1
resolution = "1024,1024"
color_aug = false
token_warmup_min = 1
token_warmup_step = 0
[training_arguments]
output_dir = "/content/drive/MyDrive/kohya-trainer/output/sdxl_lora_scheiren1"
output_name = "sdxl_lora_scheiren1"
save_precision = "fp16"
save_every_n_epochs = 2
train_batch_size = 4
max_token_length = 225
mem_eff_attn = false
sdpa = false
xformers = true
max_train_epochs = 10
max_data_loader_n_workers = 8
persistent_data_loader_workers = true
gradient_checkpointing = true
gradient_accumulation_steps = 1
mixed_precision = "fp16"
[logging_arguments]
log_with = "wandb"
log_tracker_name = "sdxl_lora1"
logging_dir = "/content/LoRA/logs"
[sample_prompt_arguments]
sample_every_n_epochs = 2
sample_sampler = "euler_a"
[saving_arguments]
save_model_as = "safetensors"
[optimizer_arguments]
optimizer_type = "AdamW"
learning_rate = 0.0001
max_grad_norm = 0
optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False",]
lr_scheduler = "constant_with_warmup"
lr_warmup_steps = 100
[additional_network_arguments]
no_metadata = false
network_module = "lycoris.kohya"
network_dim = 8
network_alpha = 4
network_args = [ "algo=loha", "conv_dim=4", "conv_alpha=1",]
network_train_unet_only = true
[advanced_training_config]
save_state = false
save_last_n_epochs_state = false
caption_dropout_rate = 0
caption_tag_dropout_rate = 0.5
caption_dropout_every_n_epochs = 0
min_snr_gamma = 5
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The text was updated successfully, but these errors were encountered: