forked from Xinyu-Xiang/DIVFusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
417 lines (378 loc) · 22.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# author:xxy,time:2022/2/23
import numpy as np
from PIL import Image
import tensorflow as tf
import scipy.stats as st
from skimage import io,data,color
from functools import reduce
import cv2
############ 常量的预定义 ############
batch_size = 5
patch_size_x = 224
patch_size_y = 224
############ Encoder ############
# 输入img为concat红外可见光图像的结果,通道数为2
# 输出为256个feature—map
def encoder(img):
with tf.variable_scope('encoder'):
with tf.variable_scope('layer1'):
weights = tf.get_variable("w1", [3, 3, 2, 64], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [64], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(img, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
with tf.variable_scope('layer2'):
weights = tf.get_variable("w2", [3, 3, 64, 128], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [128], initializer=tf.constant_initializer(0.0))
conv2 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv2 = lrelu(conv2)
with tf.variable_scope('layer3'):
weights = tf.get_variable("w3", [3, 3, 128, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b3", [256], initializer=tf.constant_initializer(0.0))
conv3 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv3 = lrelu(conv3)
with tf.variable_scope('layer4'):
weights = tf.get_variable("w4", [3, 3, 256, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b4", [256], initializer=tf.constant_initializer(0.0))
conv4 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
feature = lrelu(conv4)
# with tf.variable_scope('layer5'):
# weights = tf.get_variable("w5", [3, 3, 512, 512],
# initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b5", [512], initializer=tf.constant_initializer(0.0))
# conv5 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv4, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv5 = lrelu(conv5)
# feature = conv5
return feature
############ Decoder ############
def decoder_ir(feature_ir):
with tf.variable_scope('decoder_ir'):
with tf.variable_scope('layer1'):
weights = tf.get_variable("w1", [3, 3, 256, 128], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [128], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(feature_ir, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
with tf.variable_scope('layer2'):
weights = tf.get_variable("w2", [3, 3, 128, 64], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv2 = lrelu(conv2)
with tf.variable_scope('layer3'):
weights = tf.get_variable("w3", [3, 3, 64, 32], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b3", [32], initializer=tf.constant_initializer(0.0))
conv3 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv3 = lrelu(conv3)
with tf.variable_scope('layer4'):
weights = tf.get_variable("w4", [3, 3, 32, 1], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b4", [1], initializer=tf.constant_initializer(0.0))
conv4 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
ir_r = tf.sigmoid(conv4)
return ir_r
# def decoder_l(feature_l):
# with tf.variable_scope('decoder_l'):
# with tf.variable_scope('layer1'):
# weights = tf.get_variable("w1", [3, 3, 512, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b1", [256], initializer=tf.constant_initializer(0.0))
# conv1 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(feature_l, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv1 = lrelu(conv1)
# with tf.variable_scope('layer2'):
# weights = tf.get_variable("w2", [3, 3, 256, 128], initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b2", [128], initializer=tf.constant_initializer(0.0))
# conv2 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv2 = lrelu(conv2)
# with tf.variable_scope('layer3'):
# weights = tf.get_variable("w3", [3, 3, 128, 64], initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b3", [64], initializer=tf.constant_initializer(0.0))
# conv3 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv3 = lrelu(conv3)
# with tf.variable_scope('layer4'):
# weights = tf.get_variable("w4", [3, 3, 64, 1], initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b4", [1], initializer=tf.constant_initializer(0.0))
# conv4 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# l_r = tf.sigmoid(conv4)
# return l_r
#
# def decoder_vi_e(feature_vi_e):
# with tf.variable_scope('decoder_vi_e'):
# with tf.variable_scope('layer1'):
# weights = tf.get_variable("w1", [3, 3, 512, 256],
# initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b1", [256], initializer=tf.constant_initializer(0.0))
# conv1 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(feature_vi_e, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv1 = lrelu(conv1)
# with tf.variable_scope('layer2'):
# weights = tf.get_variable("w2", [3, 3, 256, 128],
# initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b2", [128], initializer=tf.constant_initializer(0.0))
# conv2 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv2 = lrelu(conv2)
# with tf.variable_scope('layer3'):
# weights = tf.get_variable("w3", [3, 3, 128, 64],
# initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b3", [64], initializer=tf.constant_initializer(0.0))
# conv3 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# conv3 = lrelu(conv3)
# with tf.variable_scope('layer4'):
# weights = tf.get_variable("w4", [3, 3, 64, 1], initializer=tf.truncated_normal_initializer(stddev=1e-3))
# bias = tf.get_variable("b4", [1], initializer=tf.constant_initializer(0.0))
# conv4 = tf.contrib.layers.batch_norm(
# tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
# updates_collections=None, epsilon=1e-5, scale=True)
# vi_e_r = tf.sigmoid(conv4)
# return vi_e_r
def decoder_vi_l(feature_vi_e, feature_l):
with tf.variable_scope('decoder_vi_l'):
with tf.variable_scope('layer1'):
weights = tf.get_variable("w1", [3, 3, 256, 128],
initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [128], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(feature_vi_e, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
with tf.variable_scope('layer2'):
weights = tf.get_variable("w2", [3, 3, 128, 64],
initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [64], initializer=tf.constant_initializer(0.0))
conv2 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv2 = lrelu(conv2)
with tf.variable_scope('layer3'):
weights = tf.get_variable("w3", [3, 3, 64, 32],
initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b3", [32], initializer=tf.constant_initializer(0.0))
conv3 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv3 = lrelu(conv3)
with tf.variable_scope('layer4'):
weights = tf.get_variable("w4", [3, 3, 32, 1], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b4", [1], initializer=tf.constant_initializer(0.0))
conv4 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
vi_e_r = tf.sigmoid(conv4)
with tf.variable_scope('decoder_l'):
with tf.variable_scope('layer1'):
weights = tf.get_variable("w1", [3, 3, 256, 128], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [128], initializer=tf.constant_initializer(0.0))
l_conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(feature_l, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
l_conv1 = lrelu(l_conv1)
l_conv1 = tf.concat([l_conv1, conv1], axis=3)
with tf.variable_scope('layer2'):
weights = tf.get_variable("w2", [3, 3, 256, 64], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [64], initializer=tf.constant_initializer(0.0))
l_conv2 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(l_conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
l_conv2 = lrelu(l_conv2)
with tf.variable_scope('layer3'):
weights = tf.get_variable("w3", [3, 3, 64, 32], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b3", [32], initializer=tf.constant_initializer(0.0))
l_conv3 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(l_conv2, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
l_conv3 = lrelu(l_conv3)
l_conv3 = tf.concat([l_conv3, conv3],axis=3)
with tf.variable_scope('layer4'):
weights = tf.get_variable("w4", [3, 3, 64, 1], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b4", [1], initializer=tf.constant_initializer(0.0))
l_conv4 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(l_conv3, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
l_r = tf.sigmoid(l_conv4)
return vi_e_r, l_r
############ CAM #############
def CAM_IR(input_feature):
with tf.variable_scope('CAM_IR'):
with tf.variable_scope('layer'):
weights = tf.get_variable("w1", [3, 3, 256, 32], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(input_feature, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
weights = tf.get_variable("w2", [3, 3, 32, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [256], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
vector_ir = tf.reduce_mean(conv1, [1, 2], name='global_pool', keep_dims=True)
vector_ir = tf.nn.softmax(vector_ir)
return vector_ir
def CAM_VI_E(input_feature):
with tf.variable_scope('CAM_VI_E'):
with tf.variable_scope('layer'):
weights = tf.get_variable("w1", [3, 3, 256, 32], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(input_feature, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
weights = tf.get_variable("w2", [3, 3, 32, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [256], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
vector_vi_e = tf.reduce_mean(conv1, [1, 2], name='global_pool', keep_dims=True)
vector_vi_e = tf.nn.softmax(vector_vi_e)
return vector_vi_e
def CAM_L(input_feature):
with tf.variable_scope('CAM_L'):
with tf.variable_scope('layer'):
weights = tf.get_variable("w1", [3, 3, 256, 32], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b1", [32], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(input_feature, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
conv1 = lrelu(conv1)
weights = tf.get_variable("w2", [3, 3, 32, 256], initializer=tf.truncated_normal_initializer(stddev=1e-3))
bias = tf.get_variable("b2", [256], initializer=tf.constant_initializer(0.0))
conv1 = tf.contrib.layers.batch_norm(
tf.nn.conv2d(conv1, weights, strides=[1, 1, 1, 1], padding='SAME') + bias, decay=0.9,
updates_collections=None, epsilon=1e-5, scale=True)
vector_l = tf.reduce_mean(conv1, [1, 2], name='global_pool', keep_dims=True)
vector_l = tf.nn.softmax(vector_l)
return vector_l
############ Special Feature ############
def get_sf_ir(vector_ir, feature):
with tf.variable_scope('special_feature_ir'):
# new_vector_ir = tf.broadcast_to(vector_ir, feature.shape)
feature_ir = tf.multiply(vector_ir, feature)
return feature_ir
def get_sf_l(vector_l, feature):
with tf.variable_scope('special_feature_l'):
# new_vector_l = tf.broadcast_to(vector_l, feature.shape)
feature_l = tf.multiply(vector_l, feature)
return feature_l
def get_sf_vi_e(vector_vi_e, feature):
with tf.variable_scope('special_feature_vi_e'):
# new_vector_vi_e = tf.broadcast_to(vector_vi_e, feature.shape)
feature_vi_e = tf.multiply(vector_vi_e, feature)
return feature_vi_e
############ All_model ############
def decomposition(vi,ir):
with tf.variable_scope('DecomNet', reuse=tf.AUTO_REUSE):
# 两个图像都得要是通道为1的
img = tf.concat([vi,ir],axis=-1)
feature = encoder(img)
vector_ir = CAM_IR(feature)
feature_ir = get_sf_ir(vector_ir, feature)
ir_r = decoder_ir(feature_ir)
vector_vi_e = CAM_VI_E(feature)
feature_vi_e = get_sf_vi_e(vector_vi_e, feature)
vector_l = CAM_L(feature)
feature_l = get_sf_l(vector_l, feature)
[vi_e_r, l_r] = decoder_vi_l(feature_vi_e, feature_l)
# vector_l = CAM_L(feature)
# feature_l = get_sf_l(vector_l, feature)
# l_r = decoder_l(feature_l)
return ir_r, vi_e_r, l_r
############ Tool ############
def lrelu(x, leak=0.2):
return tf.maximum(x, leak * x)
def gradient(input_tensor, direction):
smooth_kernel_x = tf.reshape(tf.constant([[0, 0], [-1, 1]], tf.float32), [2, 2, 1, 1])
smooth_kernel_y = tf.transpose(smooth_kernel_x, [1, 0, 2, 3])
if direction == "x":
kernel = smooth_kernel_x
elif direction == "y":
kernel = smooth_kernel_y
gradient_orig = tf.abs(tf.nn.conv2d(input_tensor, kernel, strides=[1, 1, 1, 1], padding='SAME'))
grad_min = tf.reduce_min(gradient_orig)
grad_max = tf.reduce_max(gradient_orig)
grad_norm = tf.div((gradient_orig - grad_min), (grad_max - grad_min + 0.0001))
return grad_norm
def laplacian(input_tensor):
kernel = tf.constant([[0, 1, 0], [1, -4, 1], [0, 1, 0]], tf.float32)
gradient_orig = tf.abs(tf.nn.conv2d(input_tensor, kernel, strides=[1, 1, 1, 1], padding='SAME'))
grad_min = tf.reduce_min(gradient_orig)
grad_max = tf.reduce_max(gradient_orig)
grad_norm = tf.div((gradient_orig - grad_min), (grad_max - grad_min + 0.0001))
return grad_norm
def load_images(file):
im = Image.open(file)
img = np.array(im, dtype="float32") / 255.0
# img_max = np.max(img)
# img_min = np.min(img)
# img_norm = np.float32((img - img_min) / np.maximum((img_max - img_min), 0.001))
img_norm = np.float32(img)
return img_norm
def hist(input):
input_int = np.uint8((input*255.0))
input_hist = cv2.equalizeHist(input_int)
input_hist = (input_hist/255.0).astype(np.float32)
return input_hist
def save_images(filepath, result_1, result_2 = None, result_3 = None):
result_1 = np.squeeze(result_1)
result_2 = np.squeeze(result_2)
result_3 = np.squeeze(result_3)
if not result_2.any():
cat_image = result_1
else:
cat_image = np.concatenate([result_1, result_2], axis=1)
if not result_3.any():
cat_image = cat_image
else:
cat_image = np.concatenate([cat_image, result_3], axis=1)
im = Image.fromarray(np.clip(cat_image * 255.0, 0, 255.0).astype('uint8'))
im.save(filepath, 'png')
def rgb_ycbcr(img_rgb):
R = tf.expand_dims(img_rgb[:, :, 0], axis=-1)
G = tf.expand_dims(img_rgb[:, :, 1], axis=-1)
B = tf.expand_dims(img_rgb[:, :, 2], axis=-1)
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cb = -0.1687 * R - 0.3313 * G + 0.5 * B + 128/255
Cr = 0.5 * R - 0.4187 * G - 0.0813 * B + 128/255
img_ycbcr = tf.concat([Y, Cb, Cr], axis=-1)
return img_ycbcr
def rgb_ycbcr_np(img_rgb):
R = np.expand_dims(img_rgb[:, :, 0], axis=-1)
G = np.expand_dims(img_rgb[:, :, 1], axis=-1)
B = np.expand_dims(img_rgb[:, :, 2], axis=-1)
Y = 0.299 * R + 0.587 * G + 0.114 * B
Cb = -0.1687 * R - 0.3313 * G + 0.5 * B + 128/255.0
Cr = 0.5 * R - 0.4187 * G - 0.0813 * B + 128/255.0
img_ycbcr = np.concatenate([Y, Cb, Cr], axis=-1)
return img_ycbcr
# def shuffle_unit(x, groups):
# with tf.variable_scope('shuffle_unit'):
# n, h, w, c = x.get_shape().as_list()
# x = tf.reshape(x, shape=tf.convert_to_tensor([tf.shape(x)[0], h, w, groups, c // groups]))
# x = tf.transpose(x, tf.convert_to_tensor([0, 1, 2, 4, 3]))
# x = tf.reshape(x, shape=tf.convert_to_tensor([tf.shape(x)[0], h, w, c]))
# return x