We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好,在detection文件夹下的标签,您是怎么获取到的呢,是用工具标注了其中一个源图像(仅仅有某一方面的信息)得到的吗?那最后用作目标检测任务时,ground truth是怎么设定的来计算AP或mAP的?谢谢。
The text was updated successfully, but these errors were encountered:
detection标签来自GAN-FM: Infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators 具体细节可查看该论文。
Sorry, something went wrong.
detection标签来自GAN-FM: Infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators具体细节可查看该论文。
感谢回答。我看了下您提到的这篇文章下的相关章节,我的理解是您是对红外图像、可见光图像和融合图像分别进行了标注,然后分别输入YOLOv5检测器里进行检测,从而得到检测图像。如果是这样的话,这三种图像怎么保证您标注的时候,位置是一模一样的呢?如果位置有出入,会不会导致指标值最后存在误差啊?期待您的回答,谢谢。
No branches or pull requests
你好,在detection文件夹下的标签,您是怎么获取到的呢,是用工具标注了其中一个源图像(仅仅有某一方面的信息)得到的吗?那最后用作目标检测任务时,ground truth是怎么设定的来计算AP或mAP的?谢谢。
The text was updated successfully, but these errors were encountered: