We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
MIF在test运行后的输出PET_MRI结果图仍然为灰度图,我想知道做哪些修改可以让输出和作者您论文中的彩色结果保持一致,期待你的回复,十分感谢
The text was updated successfully, but these errors were encountered:
MIF在测试运行后的输出PET_MRI结果图仍然为灰度图,我想知道做哪些修改可以让输出和作者您论文中的彩色结果保持一致,期待你的回复,十分感谢
Sorry, something went wrong.
实验中是使用了YCbCr来进行后处理的 你也可以在融合图像保存代码之后加一个im2RGB 的操作 函数如下 其中f_name表示融合图像的保存路径 vi_name 可以使用PET图像的路径即可 def img2RGB(f_name, vi_name): scale = 32 vi_img = Image.open(vi_name) vi_img = vi_img.convert('YCbCr')
f_img = Image.open(f_name).convert('L') w, h = f_img.size vi_img = vi_img.resize((w, h), PIL.Image.ANTIALIAS) vi_Y, vi_Cb, vi_Cr = vi_img.split() f_img = Image.open(f_name).convert('L') f_img = Image.merge('YCbCr', (f_img, vi_Cb, vi_Cr)) f_RGB = f_img.convert('RGB') f_RGB.save(f_name)
No branches or pull requests
MIF在test运行后的输出PET_MRI结果图仍然为灰度图,我想知道做哪些修改可以让输出和作者您论文中的彩色结果保持一致,期待你的回复,十分感谢
The text was updated successfully, but these errors were encountered: