-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_mnist.py
184 lines (137 loc) · 5.81 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
import torch.nn as nn
import numpy as np
import time
import torch.backends.cudnn as cudnn
from torch.utils.data import Dataset
from torchvision.transforms import RandomRotation
from torchvision.transforms import Resize
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
from model.architecture import E4_net
from model.architecture_large import E4_netL
from PIL import Image
from datetime import datetime
import argparse
now=datetime.now()
now=datetime.strftime(now,'%Y-%m-%d %H:%M:%S')
parser = argparse.ArgumentParser(description='net')
parser.add_argument('--model', '-a', default='normal')
parser.add_argument('--batch_size', type=int, default=128, help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=200, help='number of epochs to train (default: 200) ')
parser.add_argument('--learning_rate', type=float, default=2e-2, help='learning rate (default: 0.1)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--kernel', default=5, type=int, help='kernel_size')
parser.add_argument('--bias', default=False, type=bool, help='bias')
parser.add_argument('--reduction', default=1, type=float, help='reduction_ratio')
parser.add_argument('--groups', default=8, type=int, help='groups')
parser.add_argument('--dropout', default=0.2, type=float, help='dropout_rate')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
cudnn.benchmark = False # Should make training should go faster for large models
cudnn.deterministic = True
cudnn.enabled = True
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
print(args)
def compute_param(net):
model_parameters = filter(lambda p: p.requires_grad, net.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
# print('Parameters of the net: {}M'.format(params/(10**6)))
return params
class MnistRotDataset(Dataset):
def __init__(self, mode, transform=None):
assert mode in ['train', 'test']
if mode == "train":
file = "data/mnist_rotation_new/mnist_all_rotation_normalized_float_train_valid.amat"
else:
file = "data/mnist_rotation_new/mnist_all_rotation_normalized_float_test.amat"
self.transform = transform
data = np.loadtxt(file, delimiter=' ')
self.images = data[:, :-1].reshape(-1, 28, 28).astype(np.float32)
self.labels = data[:, -1].astype(np.int64)
self.num_samples = len(self.labels)
def __getitem__(self, index):
image, label = self.images[index], self.labels[index]
image = Image.fromarray(image)
if self.transform is not None:
image = self.transform(image)
return image, label
def __len__(self):
return len(self.labels)
totensor = ToTensor()
train_transform = Compose([
totensor,
])
mnist_train = MnistRotDataset(mode='train', transform=train_transform)
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=args.batch_size, shuffle=True)
test_transform = Compose([
totensor,
])
mnist_test = MnistRotDataset(mode='test', transform=test_transform)
test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=128)
if args.model=='normal':
net=E4_net(args.kernel, args.groups, args.reduction, args.dropout)
elif args.model=='large':
net=E4_netL(args.kernel, args.groups, args.reduction, args.dropout)
# net=cnn()
param=compute_param(net)
model = nn.DataParallel(net, device_ids=range(torch.cuda.device_count())).cuda()
loss_function = torch.nn.CrossEntropyLoss()
schedule=[60,120,160]
learning_rate = args.learning_rate
start=schedule[0]
best=0.
best_epoch=0
for epoch in range(1,args.epochs):
if(epoch==schedule[0]):
learning_rate=learning_rate*0.1
elif(epoch==schedule[1]):
learning_rate=learning_rate*0.1
elif(epoch==schedule[2]):
learning_rate=learning_rate*0.1
t1=time.time()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
model.train()
total = 0
correct = 0
print('Parameters of the net: {}M'.format(param/(10**6)))
for i, (x, t) in enumerate(train_loader):
optimizer.zero_grad()
x = x.cuda()
t = t.cuda()
y = model(x)
_, prediction = torch.max(y.data, 1)
total += t.shape[0]
correct += (prediction == t).sum().item()
loss = loss_function(y, t)
# writer.add_scalar('training loss', loss/x.size(0), epoch * len(train_loader) + i)
loss.backward()
optimizer.step()
print(f"epoch {epoch} | train accuracy: {correct/total*100.}")
if(epoch>=start):
total = 0
correct = 0
with torch.no_grad():
model.eval()
for i, (x, t) in enumerate(test_loader):
x = x.cuda()
t = t.cuda()
y = model(x)
_, prediction = torch.max(y.data, 1)
total += t.shape[0]
correct += (prediction == t).sum().item()
print(f"epoch {epoch} | test accuracy: {correct/total*100.}")
if(correct/total*100.>best):
best=correct/total*100
best_epoch=epoch
print('Best test acc: {},Best epoch: {}'.format(best,best_epoch))
t2=time.time()
print('Comsuming {}s'.format(t2-t1))
print('\n')
print('Best test acc: {}, Best epoch: {}'.format(best,best_epoch))
#Right