-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.aux
482 lines (482 loc) · 39.3 KB
/
main.aux
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
\relax
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand*\HyPL@Entry[1]{}
\abx@aux@refcontext{none/global//global/global}
\HyPL@Entry{0<</S/D>>}
\providecommand \oddpage@label [2]{}
\HyPL@Entry{1<</S/R>>}
\abx@aux@cite{0}{chinesepainting}
\abx@aux@segm{0}{0}{chinesepainting}
\abx@aux@cite{0}{machinery1950computing}
\abx@aux@segm{0}{0}{machinery1950computing}
\abx@aux@cite{0}{aigcwhitebook}
\abx@aux@segm{0}{0}{aigcwhitebook}
\abx@aux@cite{0}{goodfellow2016deep}
\abx@aux@segm{0}{0}{goodfellow2016deep}
\abx@aux@cite{0}{lecun2015deep}
\abx@aux@segm{0}{0}{lecun2015deep}
\abx@aux@cite{0}{kingma2013auto}
\abx@aux@segm{0}{0}{kingma2013auto}
\abx@aux@cite{0}{goodfellow2020generative}
\abx@aux@segm{0}{0}{goodfellow2020generative}
\abx@aux@cite{0}{radford2015unsupervised}
\abx@aux@segm{0}{0}{radford2015unsupervised}
\abx@aux@cite{0}{arjovsky2017wasserstein}
\abx@aux@segm{0}{0}{arjovsky2017wasserstein}
\abx@aux@cite{0}{karras2017progressive}
\abx@aux@segm{0}{0}{karras2017progressive}
\abx@aux@cite{0}{isola2017image}
\abx@aux@segm{0}{0}{isola2017image}
\abx@aux@cite{0}{zhu2017unpaired}
\abx@aux@segm{0}{0}{zhu2017unpaired}
\abx@aux@cite{0}{dong2018musegan}
\abx@aux@segm{0}{0}{dong2018musegan}
\HyPL@Entry{5<</S/D>>}
\@writefile{toc}{\contentsline {chapter}{\numberline {1\hspace {.3em}}绪论}{1}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10.0pt}}
\@writefile{lot}{\addvspace {10.0pt}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}研究背景与意义}{1}{section.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.2}国内外研究现状}{1}{section.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}2014--2017 变分自编码器和生成对抗网络时代}{1}{subsection.1.2.1}\protected@file@percent }
\abx@aux@cite{0}{larsen2016autoencoding}
\abx@aux@segm{0}{0}{larsen2016autoencoding}
\abx@aux@cite{0}{razavi2019generating}
\abx@aux@segm{0}{0}{razavi2019generating}
\abx@aux@cite{0}{ha2018world}
\abx@aux@segm{0}{0}{ha2018world}
\abx@aux@cite{0}{van2016pixel}
\abx@aux@segm{0}{0}{van2016pixel}
\abx@aux@cite{0}{van2016conditional}
\abx@aux@segm{0}{0}{van2016conditional}
\abx@aux@cite{0}{dinh2016density}
\abx@aux@segm{0}{0}{dinh2016density}
\abx@aux@cite{0}{vaswani2017attention}
\abx@aux@segm{0}{0}{vaswani2017attention}
\abx@aux@cite{0}{radford2018improving}
\abx@aux@segm{0}{0}{radford2018improving}
\abx@aux@cite{0}{devlin2018bert}
\abx@aux@segm{0}{0}{devlin2018bert}
\abx@aux@cite{0}{huang2018music}
\abx@aux@segm{0}{0}{huang2018music}
\abx@aux@cite{0}{zhang2019self}
\abx@aux@segm{0}{0}{zhang2019self}
\abx@aux@cite{0}{brock2018large}
\abx@aux@segm{0}{0}{brock2018large}
\abx@aux@cite{0}{karras2019style}
\abx@aux@segm{0}{0}{karras2019style}
\abx@aux@cite{0}{karras2020analyzing}
\abx@aux@segm{0}{0}{karras2020analyzing}
\abx@aux@cite{0}{song2019generative}
\abx@aux@segm{0}{0}{song2019generative}
\abx@aux@cite{0}{esser2021taming}
\abx@aux@segm{0}{0}{esser2021taming}
\abx@aux@cite{0}{dosovitskiy2020image}
\abx@aux@segm{0}{0}{dosovitskiy2020image}
\abx@aux@cite{0}{sauer2022stylegan}
\abx@aux@segm{0}{0}{sauer2022stylegan}
\abx@aux@cite{0}{ho2020denoising}
\abx@aux@segm{0}{0}{ho2020denoising}
\abx@aux@cite{0}{song2020denoising}
\abx@aux@segm{0}{0}{song2020denoising}
\abx@aux@cite{0}{brown2020language}
\abx@aux@segm{0}{0}{brown2020language}
\abx@aux@cite{0}{smith2022using}
\abx@aux@segm{0}{0}{smith2022using}
\abx@aux@cite{0}{thoppilan2022lamda}
\abx@aux@segm{0}{0}{thoppilan2022lamda}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}2018--2019 Transformer时代}{2}{subsection.1.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.3}2020--2023 大模型时代}{2}{subsection.1.2.3}\protected@file@percent }
\abx@aux@cite{0}{ramesh2021zero}
\abx@aux@segm{0}{0}{ramesh2021zero}
\abx@aux@cite{0}{nichol2021glide}
\abx@aux@segm{0}{0}{nichol2021glide}
\abx@aux@cite{0}{ramesh2022hierarchical}
\abx@aux@segm{0}{0}{ramesh2022hierarchical}
\abx@aux@cite{0}{saharia2022photorealistic}
\abx@aux@segm{0}{0}{saharia2022photorealistic}
\abx@aux@cite{0}{yu2022scaling}
\abx@aux@segm{0}{0}{yu2022scaling}
\abx@aux@cite{0}{rombach2022high}
\abx@aux@segm{0}{0}{rombach2022high}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}研究内容与创新点}{3}{section.1.3}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {1.4}论文组织结构}{3}{section.1.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces 生成模型分类\relax }}{4}{figure.caption.2}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:gennerative_models}{{1.1}{4}{生成模型分类\relax }{figure.caption.2}{}}
\abx@aux@cite{0}{goodfellow2016nips}
\abx@aux@segm{0}{0}{goodfellow2016nips}
\@writefile{toc}{\contentsline {chapter}{\numberline {2\hspace {.3em}}基本理论与方法}{5}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10.0pt}}
\@writefile{lot}{\addvspace {10.0pt}}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}生成模型介绍}{5}{section.2.1}\protected@file@percent }
\newlabel{eq:likelihood_for_training_data}{{2.1}{5}{生成模型介绍}{equation.2.1.1}{}}
\newlabel{eq:theta_star_max_1}{{2.2}{5}{生成模型介绍}{equation.2.1.2}{}}
\newlabel{eq:theta_star_max_2}{{2.3}{5}{生成模型介绍}{equation.2.1.3}{}}
\newlabel{eq:theta_star_max_3}{{2.4}{5}{生成模型介绍}{equation.2.1.4}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces 一维极大似然估计过程\relax }}{6}{figure.caption.3}\protected@file@percent }
\newlabel{fig:max_likelihood}{{2.1}{6}{一维极大似然估计过程\relax }{figure.caption.3}{}}
\newlabel{eq:kl_divergence_max_theta}{{2.5}{6}{生成模型介绍}{equation.2.1.5}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}显式密度模型}{6}{section.2.2}\protected@file@percent }
\newlabel{section:explicit_density_model}{{2.2}{6}{显式密度模型}{section.2.2}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.1}可求解密度模型}{7}{subsection.2.2.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{规范化流模型}{7}{subsection.2.2.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces 规范化流模型示意图\relax }}{7}{figure.caption.4}\protected@file@percent }
\newlabel{fig:normalizing_flow}{{2.2}{7}{规范化流模型示意图\relax }{figure.caption.4}{}}
\newlabel{eq:normalizing_flow_p_of_z}{{2.9}{7}{规范化流模型}{equation.2.2.9}{}}
\newlabel{eq:normalizing_flow_change_variable}{{2.12}{7}{规范化流模型}{equation.2.2.12}{}}
\newlabel{eq:normalizing_flow_flow_equation}{{2.13}{7}{规范化流模型}{equation.2.2.13}{}}
\abx@aux@cite{0}{weng2018flow}
\abx@aux@segm{0}{0}{weng2018flow}
\abx@aux@cite{0}{Jakub2022deep}
\abx@aux@segm{0}{0}{Jakub2022deep}
\@writefile{toc}{\contentsline {subsubsection}{自回归模型}{8}{equation.2.2.18}\protected@file@percent }
\newlabel{eq:autoregressive_model_defination}{{2.19}{8}{自回归模型}{equation.2.2.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces 自回归模型依赖两变量示意图\relax }}{8}{figure.caption.5}\protected@file@percent }
\newlabel{fig:autoregressive_model_finite_memory}{{2.3}{8}{自回归模型依赖两变量示意图\relax }{figure.caption.5}{}}
\abx@aux@cite{0}{lippe2022uvadlc}
\abx@aux@segm{0}{0}{lippe2022uvadlc}
\newlabel{eq:autoregressive_model_rnn}{{2.21}{9}{自回归模型}{equation.2.2.21}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces 循环神经网络示意图\relax }}{9}{figure.caption.6}\protected@file@percent }
\newlabel{fig:autoregressive_model_rnn}{{2.4}{9}{循环神经网络示意图\relax }{figure.caption.6}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2.2}近似估计密度模型}{9}{subsection.2.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{基于能量的模型}{9}{subsection.2.2.2}\protected@file@percent }
\newlabel{eq:energy_based_model_probability}{{2.22}{9}{基于能量的模型}{equation.2.2.22}{}}
\newlabel{eq:energy_based_model_integrates_sum_to_1}{{2.23}{9}{基于能量的模型}{equation.2.2.23}{}}
\abx@aux@cite{0}{weng2018VAE}
\abx@aux@segm{0}{0}{weng2018VAE}
\newlabel{eq:energy_based_model_nnl_origin}{{2.24}{10}{基于能量的模型}{equation.2.2.24}{}}
\newlabel{eq:energy_based_model_nnl_contrastive_divergence}{{2.25}{10}{基于能量的模型}{equation.2.2.25}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces 对比散度训练前后对比\relax }}{10}{figure.caption.7}\protected@file@percent }
\newlabel{fig:energy_based_model_contrastive_divergence_training}{{2.5}{10}{对比散度训练前后对比\relax }{figure.caption.7}{}}
\@writefile{toc}{\contentsline {subsubsection}{变分自编码器}{10}{ALC@unique.5}\protected@file@percent }
\abx@aux@cite{0}{vincent2008extracting}
\abx@aux@segm{0}{0}{vincent2008extracting}
\@writefile{loa}{\contentsline {algorithm}{\numberline {1}{\ignorespaces 从基于能量的模型采样\relax }}{11}{algorithm.1}\protected@file@percent }
\newlabel{alg:energy_based_model_sampling}{{1}{11}{从基于能量的模型采样\relax }{algorithm.1}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces 自编码器示意图\relax }}{11}{figure.caption.8}\protected@file@percent }
\newlabel{fig:autoencoder}{{2.6}{11}{自编码器示意图\relax }{figure.caption.8}{}}
\newlabel{eq:vae_encoder}{{2.26}{11}{变分自编码器}{equation.2.2.26}{}}
\newlabel{eq:vae_decoder}{{2.27}{11}{变分自编码器}{equation.2.2.27}{}}
\newlabel{eq:autoencoder_loss}{{2.28}{11}{变分自编码器}{equation.2.2.28}{}}
\newlabel{eq:denoising_autoencoder_corrupt}{{2.29}{11}{变分自编码器}{equation.2.2.29}{}}
\newlabel{eq:denoising_autoencoder_loss}{{2.30}{11}{变分自编码器}{equation.2.2.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces 降噪自编码器结构\relax }}{12}{figure.caption.9}\protected@file@percent }
\newlabel{fig:denoising_autoencoder_architecture}{{2.7}{12}{降噪自编码器结构\relax }{figure.caption.9}{}}
\newlabel{eq:vae_maximum_likelihood}{{2.31}{12}{变分自编码器}{equation.2.2.31}{}}
\newlabel{eq:vae_maximux_log_likelihood}{{2.32}{12}{变分自编码器}{equation.2.2.32}{}}
\newlabel{eq:var_probability_of_xi}{{2.33}{12}{变分自编码器}{equation.2.2.33}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces 使用ELBO近似变分自编码器对数似然函数\relax }}{13}{figure.caption.10}\protected@file@percent }
\newlabel{fig:vae_elbo}{{2.8}{13}{使用ELBO近似变分自编码器对数似然函数\relax }{figure.caption.10}{}}
\newlabel{eq:vae_elbo_dissect}{{2.36}{13}{变分自编码器}{equation.2.2.36}{}}
\newlabel{eq:vae_q_phi_z_mid_x_gaussian}{{2.37}{13}{变分自编码器}{equation.2.2.37}{}}
\newlabel{eq:vae_p_z_gaussian}{{2.38}{13}{变分自编码器}{equation.2.2.38}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces 变分自编码器\relax }}{14}{figure.caption.11}\protected@file@percent }
\newlabel{fig:vae}{{2.9}{14}{变分自编码器\relax }{figure.caption.11}{}}
\newlabel{eq:vae_argmax-elbo}{{2.39}{14}{变分自编码器}{equation.2.2.39}{}}
\newlabel{eq:vae_max_elbo_approx}{{2.40}{14}{变分自编码器}{equation.2.2.40}{}}
\newlabel{eq:vae_reparameterization_trick}{{2.41}{14}{变分自编码器}{equation.2.2.41}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces 重参数方法示意图\relax }}{14}{figure.caption.12}\protected@file@percent }
\newlabel{fig:vae_reparameterization_trick}{{2.10}{14}{重参数方法示意图\relax }{figure.caption.12}{}}
\abx@aux@cite{0}{Luo2022UnderstandingDM}
\abx@aux@segm{0}{0}{Luo2022UnderstandingDM}
\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces 马尔可夫层级变分自编码器示意图\relax }}{15}{figure.caption.13}\protected@file@percent }
\newlabel{fig:markovian_hierarchical_variational_autoencoder}{{2.11}{15}{马尔可夫层级变分自编码器示意图\relax }{figure.caption.13}{}}
\newlabel{eq:mhvae_joint_distribution}{{2.42}{15}{变分自编码器}{equation.2.2.42}{}}
\newlabel{eq:mhvae_posterior}{{2.43}{15}{变分自编码器}{equation.2.2.43}{}}
\abx@aux@cite{0}{sohl2015deep}
\abx@aux@segm{0}{0}{sohl2015deep}
\abx@aux@cite{0}{song2019generative}
\abx@aux@segm{0}{0}{song2019generative}
\abx@aux@cite{0}{ho2020denoising}
\abx@aux@segm{0}{0}{ho2020denoising}
\abx@aux@cite{0}{kingma2023variational}
\abx@aux@segm{0}{0}{kingma2023variational}
\newlabel{eq:mhvae_elbo_jensen_inequaality}{{2.49}{16}{变分自编码器}{equation.2.2.49}{}}
\newlabel{eq:mhvae_elbo_with_substitution}{{2.50}{16}{变分自编码器}{equation.2.2.50}{}}
\@writefile{toc}{\contentsline {subsubsection}{扩散模型}{16}{equation.2.2.50}\protected@file@percent }
\newlabel{eq:diffusion_posterior}{{2.51}{16}{扩散模型}{equation.2.2.51}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces 扩散模型示意图\relax }}{17}{figure.caption.14}\protected@file@percent }
\newlabel{fig:diffusion_model}{{2.12}{17}{扩散模型示意图\relax }{figure.caption.14}{}}
\newlabel{eq:diffusion_encoder}{{2.52}{17}{扩散模型}{equation.2.2.52}{}}
\newlabel{eq:diffusion_joint_distribution}{{2.53}{17}{扩散模型}{equation.2.2.53}{}}
\newlabel{eq:diffusion_elbo_origin}{{2.58}{18}{扩散模型}{equation.2.2.58}{}}
\newlabel{eq:diffusion_elbo}{{2.66}{18}{扩散模型}{equation.2.2.66}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces 扩散模型证据下界一致检验项示意图\relax }}{19}{figure.caption.15}\protected@file@percent }
\newlabel{fig:diffusion_model_optimize_elbo}{{2.13}{19}{扩散模型证据下界一致检验项示意图\relax }{figure.caption.15}{}}
\newlabel{eq:diffusion_rewrite_with_x_0}{{2.67}{19}{扩散模型}{equation.2.2.67}{}}
\newlabel{eq:diffusion_elbo_expectation_single}{{2.79}{20}{扩散模型}{equation.2.2.79}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces 扩散模型证据下界降噪匹配项单变量期望示意图\relax }}{21}{figure.caption.16}\protected@file@percent }
\newlabel{fig:diffusion_model_optimize_elbo_single_variable}{{2.14}{21}{扩散模型证据下界降噪匹配项单变量期望示意图\relax }{figure.caption.16}{}}
\newlabel{eq:diffusion_gaussion_transition_for_kl_divergence}{{2.80}{21}{扩散模型}{equation.2.2.80}{}}
\newlabel{eq:diffusion_gaussion_transition_for_kl_divergence_likelihood}{{2.81}{21}{扩散模型}{equation.2.2.81}{}}
\newlabel{eq:diffusion_x_t_gaussian_distribution}{{2.93}{22}{扩散模型}{equation.2.2.93}{}}
\newlabel{eq:diffusion_x_t_minux_1_gaussian_distribution}{{2.94}{22}{扩散模型}{equation.2.2.94}{}}
\newlabel{eq:diffusion_kl_divergence_q_with_c}{{2.98}{22}{扩散模型}{equation.2.2.98}{}}
\newlabel{eq:diffusion_kl_divergence_q_distribution_no_complete_square}{{2.106}{23}{扩散模型}{equation.2.2.106}{}}
\newlabel{eq:diffusion_kl_divergence_q_distribution}{{2.107}{23}{扩散模型}{equation.2.2.107}{}}
\newlabel{eq:diffusion_q_sigma}{{2.108}{23}{扩散模型}{equation.2.2.108}{}}
\newlabel{eq:diffusion_kl_divergence_two_gaussian_mu}{{2.115}{23}{扩散模型}{equation.2.2.115}{}}
\newlabel{diffusion_mu_}{{2.116}{23}{扩散模型}{equation.2.2.116}{}}
\newlabel{eq:diffusion_mu_theta}{{2.117}{24}{扩散模型}{equation.2.2.117}{}}
\newlabel{eq:diffusion_optimize}{{2.125}{24}{扩散模型}{equation.2.2.125}{}}
\newlabel{eq:diffusion_minimize_expectation_over_all_timesteps_for_sum_of_denoising_Matching}{{2.126}{24}{扩散模型}{equation.2.2.126}{}}
\newlabel{eq:diffusion_learning_diffusion_noise_parameters}{{2.135}{25}{扩散模型}{equation.2.2.135}{}}
\newlabel{eq:diffusion_snr}{{2.136}{25}{扩散模型}{equation.2.2.136}{}}
\newlabel{eq:diffusion_learning_difufsion_noise_parameters_snr}{{2.139}{25}{扩散模型}{equation.2.2.139}{}}
\newlabel{eq:diffusion_snr_nn}{{2.140}{25}{扩散模型}{equation.2.2.140}{}}
\newlabel{eq:diffusion_bar_alpha_t}{{2.142}{25}{扩散模型}{equation.2.2.142}{}}
\newlabel{eq:diffusion_bar_1_minux_bar_alpha_t}{{2.143}{25}{扩散模型}{equation.2.2.143}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}隐式密度模型}{26}{section.2.3}\protected@file@percent }
\newlabel{section:implicit_density_model}{{2.3}{26}{隐式密度模型}{section.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}生成对抗网络}{26}{subsection.2.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces 生成对抗网络训练过程\relax }}{27}{figure.caption.17}\protected@file@percent }
\newlabel{fig:gan_training}{{2.15}{27}{生成对抗网络训练过程\relax }{figure.caption.17}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}生成模型评价指标}{27}{section.2.4}\protected@file@percent }
\abx@aux@cite{0}{salimans2016improved}
\abx@aux@segm{0}{0}{salimans2016improved}
\abx@aux@cite{0}{heusel2017gans}
\abx@aux@segm{0}{0}{heusel2017gans}
\abx@aux@cite{0}{binkowski2018demystifying}
\abx@aux@segm{0}{0}{binkowski2018demystifying}
\abx@aux@cite{0}{betzalel2022study}
\abx@aux@segm{0}{0}{betzalel2022study}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}图灵测试}{28}{subsection.2.4.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.2}图像质量评估分数}{28}{subsection.2.4.2}\protected@file@percent }
\newlabel{eq:inception_score}{{2.144}{28}{图像质量评估分数}{equation.2.4.144}{}}
\newlabel{eq:fid_score}{{2.145}{28}{图像质量评估分数}{equation.2.4.145}{}}
\newlabel{eq:kernel_inception_score}{{2.146}{28}{图像质量评估分数}{equation.2.4.146}{}}
\abx@aux@cite{0}{xue2020endtoend}
\abx@aux@segm{0}{0}{xue2020endtoend}
\@writefile{toc}{\contentsline {chapter}{\numberline {3\hspace {.3em}}降噪扩散模型生成中国画}{30}{chapter.3}\protected@file@percent }
\@writefile{lof}{\addvspace {10.0pt}}
\@writefile{lot}{\addvspace {10.0pt}}
\@writefile{toc}{\contentsline {section}{\numberline {3.1}模型概述}{30}{section.3.1}\protected@file@percent }
\@writefile{loa}{\contentsline {algorithm}{\numberline {2}{\ignorespaces 扩散模型训练算法\relax }}{30}{algorithm.2}\protected@file@percent }
\newlabel{alg:diffusion_training}{{2}{30}{扩散模型训练算法\relax }{algorithm.2}{}}
\@writefile{loa}{\contentsline {algorithm}{\numberline {3}{\ignorespaces 扩散模型采样算法\relax }}{30}{algorithm.3}\protected@file@percent }
\newlabel{alg:diffusion_sampling}{{3}{30}{扩散模型采样算法\relax }{algorithm.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.2}数据集}{30}{section.3.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces 完整数据集中国画样本\relax }}{31}{figure.caption.18}\protected@file@percent }
\newlabel{fig:complete_dataset_samples}{{3.1}{31}{完整数据集中国画样本\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces 浅色中国画数据集样本\relax }}{31}{figure.caption.19}\protected@file@percent }
\newlabel{fig:white_dataset_samples}{{3.2}{31}{浅色中国画数据集样本\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces 深色中国画数据集样本\relax }}{32}{figure.caption.20}\protected@file@percent }
\newlabel{fig:yellow_dataset_samples}{{3.3}{32}{深色中国画数据集样本\relax }{figure.caption.20}{}}
\@writefile{toc}{\contentsline {section}{\numberline {3.3}实验}{32}{section.3.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}实验1-完整数据集生成中国画}{33}{subsection.3.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces 实验1-完整数据集生成中国画采样图\relax }}{33}{figure.caption.21}\protected@file@percent }
\newlabel{fig:diffusion_results1_sample16}{{3.4}{33}{实验1-完整数据集生成中国画采样图\relax }{figure.caption.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{实验配置}{33}{figure.caption.21}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{实验结果与分析}{33}{figure.caption.21}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}实验2-浅色中国画数据集大批量训练}{34}{subsection.3.3.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces 实验2-浅色中国画数据集大批量训练生成中国画采样图\relax }}{34}{figure.caption.22}\protected@file@percent }
\newlabel{fig:diffusion_results2_sample70}{{3.5}{34}{实验2-浅色中国画数据集大批量训练生成中国画采样图\relax }{figure.caption.22}{}}
\@writefile{toc}{\contentsline {subsubsection}{实验配置}{34}{figure.caption.22}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{实验结果与分析}{34}{figure.caption.22}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}实验3-浅色中国画数据集小批量训练}{35}{subsection.3.3.3}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces 实验3-浅色中国画数据集小批量训练生成中国画采样图\relax }}{35}{figure.caption.23}\protected@file@percent }
\newlabel{fig:diffusion_results3_sample80}{{3.6}{35}{实验3-浅色中国画数据集小批量训练生成中国画采样图\relax }{figure.caption.23}{}}
\@writefile{toc}{\contentsline {subsubsection}{实验配置}{35}{figure.caption.23}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{实验结果与分析}{35}{figure.caption.23}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.4}实验4-深色中国画数据集生成中国画}{36}{subsection.3.3.4}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces 实验4-深色中国画数据集生成中国画采样图\relax }}{36}{figure.caption.24}\protected@file@percent }
\newlabel{fig:diffusion_results4_sample33}{{3.7}{36}{实验4-深色中国画数据集生成中国画采样图\relax }{figure.caption.24}{}}
\@writefile{toc}{\contentsline {subsubsection}{实验配置}{36}{figure.caption.24}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{实验结果与分析}{36}{figure.caption.24}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{结论}{37}{chapter*.25}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{参考文献}{38}{chapter*.26}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{致谢}{43}{chapter*.27}\protected@file@percent }
\@writefile{toc}{\contentsline {chapter}{\numberline {附录 A\hspace {.3em}}基础知识}{44}{appendix.A}\protected@file@percent }
\@writefile{lof}{\addvspace {10.0pt}}
\@writefile{lot}{\addvspace {10.0pt}}
\@writefile{toc}{\contentsline {section}{\numberline {A.1}数学}{44}{section.A.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.1}线性代数}{44}{subsection.A.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{对角矩阵}{44}{subsection.A.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{矩阵乘法}{44}{subsection.A.1.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{矩阵的迹}{44}{subsection.A.1.1}\protected@file@percent }
\newlabel{eq:matrix_trac}{{A.1}{44}{矩阵的迹}{equation.A.1.1}{}}
\@writefile{toc}{\contentsline {subsubsection}{范数}{44}{equation.A.1.1}\protected@file@percent }
\newlabel{eq:norm}{{A.2}{44}{范数}{equation.A.1.2}{}}
\newlabel{eq:l1_norm}{{A.3}{44}{范数}{equation.A.1.3}{}}
\newlabel{eq:max_norm}{{A.4}{44}{范数}{equation.A.1.4}{}}
\newlabel{eq:frobenius_norm}{{A.5}{44}{范数}{equation.A.1.5}{}}
\@writefile{toc}{\contentsline {subsubsection}{矩阵行列式}{45}{equation.A.1.5}\protected@file@percent }
\newlabel{eq:determinant_of_matrix}{{A.6}{45}{矩阵行列式}{equation.A.1.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{可逆矩阵}{45}{equation.A.1.7}\protected@file@percent }
\newlabel{eq:invertable_matrix_defination}{{A.8}{45}{可逆矩阵}{equation.A.1.8}{}}
\newlabel{eq:determinant_of_inverse_matrix}{{A.10}{45}{可逆矩阵}{equation.A.1.10}{}}
\@writefile{toc}{\contentsline {subsubsection}{雅可比矩阵}{45}{equation.A.1.10}\protected@file@percent }
\newlabel{eq:jacabian_matrix}{{A.11}{45}{雅可比矩阵}{equation.A.1.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.2}概率论}{46}{subsection.A.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{概率密度函数}{46}{subsection.A.1.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{概率质量函数}{46}{equation.A.1.12}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{正态分布}{46}{equation.A.1.13}\protected@file@percent }
\newlabel{eq:gaussian_distribution}{{A.14}{46}{正态分布}{equation.A.1.14}{}}
\newlabel{eq:sum_of_two_gaussian_distributions}{{A.19}{46}{正态分布}{equation.A.1.19}{}}
\@writefile{toc}{\contentsline {subsubsection}{期望}{46}{equation.A.1.19}\protected@file@percent }
\newlabel{eq:expection_discrete}{{A.20}{46}{期望}{equation.A.1.20}{}}
\newlabel{eq:expection_continuous}{{A.21}{46}{期望}{equation.A.1.21}{}}
\@writefile{toc}{\contentsline {subsubsection}{协方差}{47}{equation.A.1.21}\protected@file@percent }
\newlabel{eq:covariance}{{A.22}{47}{协方差}{equation.A.1.22}{}}
\@writefile{toc}{\contentsline {subsubsection}{极大似然估计}{47}{equation.A.1.22}\protected@file@percent }
\newlabel{eq:maximux_likelihood_estimation_orgin}{{A.23}{47}{极大似然估计}{equation.A.1.23}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.1}{\ignorespaces 极大似然估计示意图\relax }}{47}{figure.caption.28}\protected@file@percent }
\newlabel{fig:maximux_likelihood_estimation}{{A.1}{47}{极大似然估计示意图\relax }{figure.caption.28}{}}
\newlabel{eq:maximux_likelihood_estimation_discrete}{{A.24}{47}{极大似然估计}{equation.A.1.24}{}}
\newlabel{eq:maximux_likelihood_estimation_discrete_log}{{A.25}{47}{极大似然估计}{equation.A.1.25}{}}
\newlabel{eq:maximux_likelihood_estimation_continuous_log}{{A.26}{47}{极大似然估计}{equation.A.1.26}{}}
\@writefile{toc}{\contentsline {subsubsection}{边缘似然}{48}{equation.A.1.26}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{全概率公式}{48}{equation.A.1.26}\protected@file@percent }
\newlabel{eq:total_probability_theorem_1}{{A.27}{48}{全概率公式}{equation.A.1.27}{}}
\newlabel{eq:total_probability_theorem_2}{{A.28}{48}{全概率公式}{equation.A.1.28}{}}
\@writefile{toc}{\contentsline {subsubsection}{贝叶斯定理}{48}{equation.A.1.28}\protected@file@percent }
\newlabel{eq:bayes_rule_1}{{A.29}{48}{贝叶斯定理}{equation.A.1.29}{}}
\newlabel{eq:bayes_rule_2}{{A.30}{48}{贝叶斯定理}{equation.A.1.30}{}}
\@writefile{toc}{\contentsline {subsubsection}{贝叶斯推理}{48}{equation.A.1.30}\protected@file@percent }
\newlabel{eq:bayesian_inference}{{A.31}{48}{贝叶斯推理}{equation.A.1.31}{}}
\@writefile{toc}{\contentsline {subsubsection}{蒙特卡洛方法}{49}{equation.A.1.31}\protected@file@percent }
\newlabel{eq:monte_carlo_sampling_sum}{{A.32}{49}{蒙特卡洛方法}{equation.A.1.32}{}}
\newlabel{eq:monte_carlo_sampling_integral}{{A.33}{49}{蒙特卡洛方法}{equation.A.1.33}{}}
\@writefile{toc}{\contentsline {subsubsection}{随机微分方程}{49}{equation.A.1.33}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{对比散度}{49}{equation.A.1.33}\protected@file@percent }
\newlabel{eq:contrastive_divergence_evidence_p}{{A.34}{49}{对比散度}{equation.A.1.34}{}}
\newlabel{eq:contrastive_divergence_evidence_z}{{A.35}{49}{对比散度}{equation.A.1.35}{}}
\newlabel{eq:contrastive_divergence_likelihood}{{A.36}{49}{对比散度}{equation.A.1.36}{}}
\newlabel{eq:contrastive_divergence_energy_function}{{A.37}{50}{对比散度}{equation.A.1.37}{}}
\newlabel{eq:contrastive_divergence_partial_negative_log_likelihood}{{A.45}{50}{对比散度}{equation.A.1.45}{}}
\newlabel{eq:contrastive_divergence_gradient_mcmc_infinite}{{A.47}{50}{对比散度}{equation.A.1.47}{}}
\@writefile{toc}{\contentsline {subsubsection}{证据下界}{50}{equation.A.1.48}\protected@file@percent }
\newlabel{eq:elbo_probability_of_x_with_integral}{{A.49}{50}{证据下界}{equation.A.1.49}{}}
\newlabel{eq:elbo_probability_of_x_chain_rule}{{A.50}{51}{证据下界}{equation.A.1.50}{}}
\newlabel{eq:elbo_jensen_inequaality}{{A.56}{51}{证据下界}{equation.A.1.56}{}}
\newlabel{eq:evidence_lower_bound}{{A.57}{51}{证据下界}{equation.A.1.57}{}}
\newlabel{eq:elbo_eexpection_and_kl_divergence}{{A.64}{52}{证据下界}{equation.A.1.64}{}}
\@writefile{toc}{\contentsline {subsubsection}{重参数方法}{52}{equation.A.1.65}\protected@file@percent }
\newlabel{eq:reparameterization_trick}{{A.66}{52}{重参数方法}{equation.A.1.66}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.3}信息论}{52}{subsection.A.1.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{信息论基础}{52}{subsection.A.1.3}\protected@file@percent }
\newlabel{eq:information_theory}{{A.67}{53}{信息论基础}{equation.A.1.67}{}}
\@writefile{toc}{\contentsline {subsubsection}{香农熵}{53}{equation.A.1.67}\protected@file@percent }
\newlabel{eq:shannon_entropy}{{A.68}{53}{香农熵}{equation.A.1.68}{}}
\@writefile{toc}{\contentsline {subsubsection}{Kullback-Leibler(KL)散度}{53}{equation.A.1.68}\protected@file@percent }
\newlabel{eq:kl_divergence_orgin}{{A.69}{53}{Kullback-Leibler(KL)散度}{equation.A.1.69}{}}
\newlabel{eq:kl_divergence}{{A.70}{53}{Kullback-Leibler(KL)散度}{equation.A.1.70}{}}
\newlabel{eq:kl_divergence_geq_zero}{{A.76}{53}{Kullback-Leibler(KL)散度}{equation.A.1.76}{}}
\newlabel{eq:kl_divergence_of_two_gaussian}{{A.77}{54}{Kullback-Leibler(KL)散度}{equation.A.1.77}{}}
\@writefile{toc}{\contentsline {subsubsection}{交叉熵}{54}{equation.A.1.77}\protected@file@percent }
\newlabel{eq:cross_euqation}{{A.79}{54}{交叉熵}{equation.A.1.79}{}}
\@writefile{toc}{\contentsline {subsubsection}{信噪比}{54}{equation.A.1.79}\protected@file@percent }
\newlabel{eq:signal_to_noise_ratio}{{A.80}{54}{信噪比}{equation.A.1.80}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1.4}其他}{54}{subsection.A.1.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{配方法}{54}{subsection.A.1.4}\protected@file@percent }
\newlabel{eq:completing_the_square_method}{{A.82}{54}{配方法}{equation.A.1.82}{}}
\@writefile{toc}{\contentsline {subsubsection}{排列}{55}{equation.A.1.82}\protected@file@percent }
\newlabel{eq:parity_of_a_permutation}{{A.83}{55}{排列}{equation.A.1.83}{}}
\@writefile{toc}{\contentsline {subsubsection}{S型函数}{55}{equation.A.1.83}\protected@file@percent }
\newlabel{eq:sigmoid_function}{{A.84}{55}{S型函数}{equation.A.1.84}{}}
\@writefile{toc}{\contentsline {subsubsection}{换元定理在概率中的应用}{55}{equation.A.1.84}\protected@file@percent }
\newlabel{eq:mutivariable_change_variable_in_probability}{{A.87}{55}{换元定理在概率中的应用}{equation.A.1.87}{}}
\@writefile{toc}{\contentsline {subsubsection}{反函数定理应用}{55}{equation.A.1.87}\protected@file@percent }
\newlabel{eq:inverse_function_theorem_application}{{A.88}{55}{反函数定理应用}{equation.A.1.88}{}}
\@writefile{toc}{\contentsline {subsubsection}{微分方程}{55}{equation.A.1.88}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{杰森不等式}{56}{equation.A.1.88}\protected@file@percent }
\newlabel{eq:Jensen_ineuqality}{{A.89}{56}{杰森不等式}{equation.A.1.89}{}}
\@writefile{toc}{\contentsline {subsubsection}{指示函数}{56}{equation.A.1.89}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{狄拉克{$\delta $}函数}{56}{equation.A.1.90}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{狄拉克测量}{56}{equation.A.1.90}\protected@file@percent }
\newlabel{eq:dirac_measure}{{A.91}{56}{狄拉克测量}{equation.A.1.91}{}}
\@writefile{toc}{\contentsline {subsubsection}{点评估}{56}{equation.A.1.91}\protected@file@percent }
\newlabel{eq:point_evaluation}{{A.92}{56}{点评估}{equation.A.1.92}{}}
\@writefile{toc}{\contentsline {subsubsection}{泛函}{56}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{向量空间}{57}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{内积空间}{57}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{欧几里得向量空间}{57}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{希尔伯特空间}{57}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{再生核希尔伯特空间}{57}{equation.A.1.92}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{最大均值差异}{57}{equation.A.1.92}\protected@file@percent }
\newlabel{eq:maximux_mean_distance}{{A.93}{57}{最大均值差异}{equation.A.1.93}{}}
\@writefile{toc}{\contentsline {section}{\numberline {A.2}物理学}{57}{section.A.2}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {A.2.1}玻尔兹曼分布}{57}{subsection.A.2.1}\protected@file@percent }
\newlabel{eq:boltzmann_equation_without_q}{{A.94}{57}{玻尔兹曼分布}{equation.A.2.94}{}}
\newlabel{eq:boltzmann_equation_q}{{A.95}{58}{玻尔兹曼分布}{equation.A.2.95}{}}
\newlabel{eq:boltzmann_equation}{{A.96}{58}{玻尔兹曼分布}{equation.A.2.96}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.2.2}朗之万动力学}{58}{subsection.A.2.2}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {A.3}机器学习与深度学习}{58}{section.A.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {A.3.1}概率图模型}{58}{subsection.A.3.1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{有向图模型}{58}{equation.A.3.97}\protected@file@percent }
\newlabel{eq:directed_graph_model}{{A.98}{58}{有向图模型}{equation.A.3.98}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {A.2}{\ignorespaces 有向图模型实例\relax }}{59}{figure.caption.29}\protected@file@percent }
\newlabel{fig:directed_graph_model}{{A.2}{59}{有向图模型实例\relax }{figure.caption.29}{}}
\@writefile{toc}{\contentsline {subsubsection}{无向图模型}{59}{equation.A.3.100}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {A.3}{\ignorespaces 无向图模型实例\relax }}{59}{figure.caption.30}\protected@file@percent }
\newlabel{fig:undirected_graph_model}{{A.3}{59}{无向图模型实例\relax }{figure.caption.30}{}}
\newlabel{eq:undirected_graph_model}{{A.101}{60}{无向图模型}{equation.A.3.101}{}}
\abx@aux@read@bbl@mdfivesum{E19A8F6204726751D5621E377FC60F4F}
\abx@aux@defaultrefcontext{0}{chinesepainting}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{machinery1950computing}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{aigcwhitebook}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{goodfellow2016deep}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{lecun2015deep}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{kingma2013auto}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{goodfellow2020generative}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{radford2015unsupervised}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{arjovsky2017wasserstein}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{karras2017progressive}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{isola2017image}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{zhu2017unpaired}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{dong2018musegan}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{larsen2016autoencoding}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{razavi2019generating}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{ha2018world}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{van2016pixel}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{van2016conditional}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{dinh2016density}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{vaswani2017attention}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{radford2018improving}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{devlin2018bert}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{huang2018music}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{zhang2019self}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{brock2018large}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{karras2019style}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{karras2020analyzing}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{song2019generative}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{esser2021taming}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{dosovitskiy2020image}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{sauer2022stylegan}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{ho2020denoising}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{song2020denoising}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{brown2020language}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{smith2022using}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{thoppilan2022lamda}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{ramesh2021zero}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{nichol2021glide}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{ramesh2022hierarchical}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{saharia2022photorealistic}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{yu2022scaling}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{rombach2022high}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{goodfellow2016nips}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{weng2018flow}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{Jakub2022deep}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{lippe2022uvadlc}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{weng2018VAE}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{vincent2008extracting}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{Luo2022UnderstandingDM}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{sohl2015deep}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{kingma2023variational}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{salimans2016improved}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{heusel2017gans}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{binkowski2018demystifying}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{betzalel2022study}{none/global//global/global}
\abx@aux@defaultrefcontext{0}{xue2020endtoend}{none/global//global/global}
\gdef \@abspage@last{65}