-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain_multi_step.py
327 lines (262 loc) · 12.9 KB
/
train_multi_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import torch
import numpy as np
import argparse
import time
from tensorboardX import SummaryWriter
from util import *
from trainer import Trainer
from model.esg import ESG
import sys,os
from evaluate import get_scores
#log
class Logger(object):
def __init__(self,fileN ="Default.log"):
self.terminal = sys.stdout
self.log = open(fileN,"a")
def write(self,message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='cuda:3',help='')
parser.add_argument('--data',type=str,default='nyc-bike',help='the name of the dataset')
parser.add_argument('--expid',type=str,default='1',help='The folder name used to save model, output and evaluation metrics. This can be set to any word')
parser.add_argument('--dy_embedding_dim',type=int,default=20,help='the dimension of evolving node representation')
parser.add_argument('--dy_interval',type=list, default=[1,1,1],help='time intervals for each layer')
parser.add_argument('--num_nodes',type=int,default=250,help='number of nodes/variables')#bike 250 taxi 266
parser.add_argument('--seq_in_len',type=int,default=12,help='input sequence length')
parser.add_argument('--seq_out_len',type=int,default=12,help='output sequence length')
parser.add_argument('--in_dim',type=int,default=2,help='inputs dimension')
parser.add_argument('--out_dim',type=int,default=2,help='inputs dimension')
parser.add_argument('--layers',type=int,default=3,help='number of layers')
parser.add_argument('--conv_channels',type=int,default=32,help='convolution channels')
parser.add_argument('--residual_channels',type=int,default=32,help='residual channels')
parser.add_argument('--skip_channels',type=int,default=64,help='skip channels')
parser.add_argument('--end_channels',type=int,default=128,help='end channels')
parser.add_argument('--kernel_set',type=list,default=[2,6],help='the kernel set in TCN')
parser.add_argument('--dilation_exponential',type=int,default=1,help='dilation exponential')
parser.add_argument('--gcn_depth',type=int,default=2,help='graph convolution depth')
# parser.add_argument('--fc_dim',type=int,default= 95744,help='fc_dim') #bike 95744 taxi 95744
parser.add_argument('--st_embedding_dim',type=int,default=40,help='the dimension of static node representation')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--propalpha',type=float,default=0.05,help='prop alpha')
parser.add_argument('--mask0',type=str_to_bool,default=False,help='whether to mask value 0 in the raw data')
parser.add_argument('--cl', type=str_to_bool, default=False,help='whether to do curriculum learning')
parser.add_argument('--batch_size',type=int,default=16,help='batch size')
parser.add_argument('--learning_rate',type=float,default=0.001,help='learning rate')
parser.add_argument('--weight_decay',type=float,default=0.0001,help='weight decay rate')
parser.add_argument('--clip',type=int,default=5,help='clip')
parser.add_argument('--step_size1',type=int,default=2500,help='step_size')
parser.add_argument('--step_size2',type=int,default=100,help='step_size')
parser.add_argument('--epochs',type=int,default=300,help='')
parser.add_argument('--early_stop',type=str_to_bool,default=True,help='')
parser.add_argument('--early_stop_steps',type=int,default=30,help='')
parser.add_argument('--print_interval',type=int,default=50,help='')
parser.add_argument('--runs',type=int,default=10,help='number of runs')
args = parser.parse_args()
torch.set_num_threads(3)
def main(runid):
#load data
save_folder = os.path.join('./saves',args.data, args.expid, str(runid))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
model_path = os.path.join(save_folder,'best-model.pt')
sys.stdout = Logger(os.path.join(save_folder,'log.txt'))
device = torch.device(args.device)
dataloader = load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
node_fea = get_node_fea(args.data, 0.7)
node_fea = torch.tensor(node_fea).type(torch.FloatTensor).to(args.device)
model = ESG(args.dy_embedding_dim, args.dy_interval, args.num_nodes, args.seq_in_len, args.seq_out_len, args.in_dim, args.out_dim, 1, args.layers,
conv_channels=args.conv_channels, residual_channels=args.residual_channels,
skip_channels=args.skip_channels, end_channels= args.end_channels, kernel_set=args.kernel_set,
dilation_exp=args.dilation_exponential, gcn_depth=args.gcn_depth,
device=device, fc_dim = (node_fea.shape[0]-18)*16, st_embedding_dim=args.st_embedding_dim,
dropout=args.dropout, propalpha=args.propalpha, layer_norm_affline=False,
static_feat = node_fea)
print(args)
print('The recpetive field size is', model.receptive_field)
nParams = sum([p.nelement() for p in model.parameters()])
print('Number of model parameters is', nParams)
print(model)
run_folder = os.path.join(save_folder,'run')
if not os.path.exists(run_folder):
os.makedirs(run_folder)
writer = SummaryWriter(run_folder)
engine = Trainer(model, args.learning_rate, args.weight_decay, args.clip, args.step_size1, args.seq_out_len, scaler, device, args.cl,args.mask0)
try:
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
minl = 1e5
best_epoch = 1e5
for i in range(1,args.epochs+1):
train_loss = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
trainx = torch.Tensor(x).to(device)
tx= trainx.transpose(1, 3) #[B,C,N,T]
trainy = torch.Tensor(y).to(device)
ty = trainy.transpose(1, 3)
loss = engine.train(tx, ty[:,:args.out_dim,:,:])
train_loss.append(loss)
if iter % args.print_interval == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}'
print(log.format(iter, train_loss[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
#validation
valid_loss = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).to(device)
testy = testy.transpose(1, 3)
vloss = engine.eval(testx, testy[:,:args.out_dim,:,:])
valid_loss.append(vloss)
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mvalid_loss = np.mean(valid_loss)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Valid Loss: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mvalid_loss, (t2 - t1)),flush=True)
writer.add_scalars('loss', {'train':mtrain_loss}, global_step=i )
writer.add_scalars('loss', {'valid':mvalid_loss}, global_step=i )
if mvalid_loss<minl:
with open(model_path, 'wb') as f:
torch.save(engine.model, f)
#torch.save(engine.model.state_dict(), os.path.join(save_folder,"exp.pth"))
minl = mvalid_loss
best_epoch = i
print(f'save best epoch {best_epoch} *****************')
elif args.early_stop and i - best_epoch > args.early_stop_steps:
print('best epoch:', best_epoch)
raise ValueError('Early stopped.')
except (ValueError, KeyboardInterrupt) as e:
print(e)
print('-' * 89)
print('Exiting from training early')
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
bestid = np.argmin(his_loss)
# engine.model.load_state_dict(torch.load(os.path.join(save_folder,"exp.pth")))
# Load the best saved model.
with open(model_path, 'rb') as f:
engine.model = torch.load(f)
print("Training finished")
print('Best epoch:', bestid)
print("The valid loss on best model is", str(round(his_loss[bestid],4)))
#valid data
outputs = []
realy = torch.Tensor(dataloader['y_val']).to(device)
realy = realy.transpose(1,3)[:,:args.out_dim,:,:] #[B, C, N,T]
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1,3)
with torch.no_grad():
preds = engine.model(testx) #[B,T,N,1]
preds = preds.transpose(1,3)
outputs.append(preds)#[B,C,N,T]
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
# mask = 1
# if args.data == 'nyc-bike' or args.data == 'nyc-taxi':
# mask = 0
preds = scaler.inverse_transform(yhat).transpose(1,-1).cpu().numpy()
targets = realy.transpose(1,-1).cpu().numpy()
valid_scores = get_scores(preds, targets, mask = args.mask0, out_catagory='multi')
vrmse = valid_scores['RMSE']['all']
vmae = valid_scores['MAE']['all']
vcorr = valid_scores['CORR']['all']
#test data
outputs = []
realy = torch.Tensor(dataloader['y_test']).to(device) #[B, T, N,C]
realy = realy.transpose(1,3)[:,:args.out_dim,:,:] #[B, C, N,T]
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
with torch.no_grad():
preds = engine.model(testx) #[B,T,N,1]
preds = preds.transpose(1, 3)
outputs.append(preds)#[B,C,N,T]
yhat = torch.cat(outputs, dim=0)
yhat = yhat[:realy.size(0), ...]
save_predicitions = scaler.inverse_transform(yhat).transpose(1,-1).cpu().numpy()
save_targets = realy.transpose(1,-1).cpu().numpy()
test_scores = get_scores(save_predicitions, save_targets, mask = args.mask0, out_catagory='multi', detail = True)
rmse = []
mae = []
corr = []
for i in range(args.seq_out_len):
rmse.append(test_scores['RMSE'][f'horizon-{i}'])
mae.append(test_scores['MAE'][f'horizon-{i}'])
corr.append(test_scores['CORR'][f'horizon-{i}'])
armse = test_scores['RMSE']['all']
amae = test_scores['MAE']['all']
acorr = test_scores['CORR']['all']
print('test results:')
print(json.dumps(test_scores, cls=MyEncoder, indent=4))
with open(os.path.join(save_folder, 'test-scores.json'), 'w+') as f:
json.dump(test_scores, f, cls=MyEncoder, indent=4)
np.savez(os.path.join(save_folder, 'test-results.npz'), predictions=save_predicitions, targets=save_targets)
return vrmse, vmae, vcorr, rmse, mae, corr, armse, amae, acorr
if __name__ == "__main__":
vrmse= []
vmae = []
vcorr = []
rmse = []
mae = []
corr = []
armse = []
amae = []
acorr = []
for i in range(args.runs):
v1, v2, v3, t1, t2, t3, a1, a2, a3 = main(i)
vrmse.append(v1)
vmae.append(v2)
vcorr.append(v3)
rmse.append(t1)
mae.append(t2)
corr.append(t3)
armse.append(a1)
amae.append(a2)
acorr.append(a3)
rmse = np.array(rmse)
mae = np.array(mae)
corr = np.array(corr)
mrmse = np.mean(rmse,0)
mmae = np.mean(mae,0)
mcorr = np.mean(corr,0)
srmse = np.std(rmse,0)
smae = np.std(mae,0)
scorr = np.std(corr,0)
print(f'\n\nResults for {args.runs} runs\n\n')
#valid data
print('valid\tRMSE\tMAE\tCORR')
log = 'mean:\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(np.mean(vrmse),np.mean(vmae),np.mean(vcorr)))
log = 'std:\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(np.std(vrmse),np.std(vmae),np.std(vcorr)))
print('\n\n')
#test data
print('test|horizon\tRMSE-mean\tMAE-mean\tCORR-mean\tRMSE-std\tMAE-std\tcorr-std')
for i in [2,5,11]:
log = '{:d}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(i+1, mrmse[i], mmae[i], mcorr[i], srmse[i], smae[i], scorr[i]))
print('test|All\tRMSE-mean\tMAE-mean\tCORR-mean\tRMSE-std\tMAE-std\tcorr-std')
print(log.format(0, np.mean(armse,0), np.mean(amae,0), np.mean(acorr,0), np.std(armse,0), np.std(amae,0), np.std(acorr,0)))