forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bytetrack_yolox.yml
68 lines (59 loc) · 1.71 KB
/
bytetrack_yolox.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# This config is an assembled config for ByteTrack MOT, used as eval/infer mode for MOT.
_BASE_: [
'detector/yolox_x_24e_800x1440_mix_det.yml',
'_base_/mix_det.yml',
'_base_/yolox_mot_reader_800x1440.yml'
]
weights: output/bytetrack_yolox/model_final
log_iter: 20
snapshot_epoch: 2
metric: MOT # eval/infer mode
num_classes: 1
architecture: ByteTrack
pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/yolox_x_300e_coco.pdparams
ByteTrack:
detector: YOLOX
reid: None
tracker: JDETracker
det_weights: https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_det.pdparams
reid_weights: None
depth_mult: 1.33
width_mult: 1.25
YOLOX:
backbone: CSPDarkNet
neck: YOLOCSPPAN
head: YOLOXHead
input_size: [800, 1440]
size_stride: 32
size_range: [18, 22] # multi-scale range [576*1024 ~ 800*1440], w/h ratio=1.8
CSPDarkNet:
arch: "X"
return_idx: [2, 3, 4]
depthwise: False
YOLOCSPPAN:
depthwise: False
# Tracking requires higher quality boxes, so NMS score_threshold will be higher
YOLOXHead:
l1_epoch: 20
depthwise: False
loss_weight: {cls: 1.0, obj: 1.0, iou: 5.0, l1: 1.0}
assigner:
name: SimOTAAssigner
candidate_topk: 10
use_vfl: False
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.01
nms_threshold: 0.7
# For speed while keep high mAP, you can modify 'nms_top_k' to 1000 and 'keep_top_k' to 100, the mAP will drop about 0.1%.
# For high speed demo, you can modify 'score_threshold' to 0.25 and 'nms_threshold' to 0.45, but the mAP will drop a lot.
# BYTETracker
JDETracker:
use_byte: True
match_thres: 0.9
conf_thres: 0.6
low_conf_thres: 0.2
min_box_area: 100
vertical_ratio: 1.6 # for pedestrian